IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0214664.html
   My bibliography  Save this article

Enhanced weight-based clustering algorithm to provide reliable delivery for VANET safety applications

Author

Listed:
  • Abubakar Bello Tambawal
  • Rafidah Md Noor
  • Rosli Salleh
  • Christopher Chembe
  • Michael Oche

Abstract

A vehicular ad hoc network (VANET) is an emerging and promising wireless technology aimed to improve traffic safety and provide comfort to road users. However, the high mobility of vehicles and frequent topology changes pose a considerable challenge to the reliable delivery of safety applications. Clustering is one of the control techniques used in VANET to make the frequent topology changes less dynamic. Nevertheless, research has shown that most of the existing clustering algorithms focus on cluster head (CH) election with very few addressing other critical issues such as cluster formation and maintenance. This has led to unstable clusters which could affect the timely delivery of safety applications. In this study, enhanced weight-based clustering algorithm (EWCA) was developed to address these challenges. We considered any vehicle moving on the same road segment with the same road ID and within the transmission range of its neighbour to be suitable for the cluster formation process. This was attributed to the fact that all safety messages are expected to be shared among the vehicles within the vicinity irrespective of their relative speedto avoid any hazardous situation. To elect a CH, we identified some metrics on the basis of the vehicle mobility information. Each vehicle was associated with a predefined weight value based on its relevance. A vehicle with the highest weight value was elected as the primary cluster head (PCH). We also introduced a secondary cluster head (SeCH) as a backup to the PCH to improve the cluster stability. SeCH took over the leadership whenever the PCH was not suitable for continuing with the leadership. The simulation results of the proposed approach showed a better performance with an increase of approximately40%– 45% in the cluster stability when compared with the existing approaches. Similarly, cluster formation messages were significantly minimized, hence reducing the communication overhead to the system and improving the reliable delivery of the safety applications.

Suggested Citation

  • Abubakar Bello Tambawal & Rafidah Md Noor & Rosli Salleh & Christopher Chembe & Michael Oche, 2019. "Enhanced weight-based clustering algorithm to provide reliable delivery for VANET safety applications," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-19, April.
  • Handle: RePEc:plo:pone00:0214664
    DOI: 10.1371/journal.pone.0214664
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214664
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0214664&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0214664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghassan Husnain & Shahzad Anwar & Gulbadan Sikander & Armughan Ali & Sangsoon Lim, 2023. "A Bio-Inspired Cluster Optimization Schema for Efficient Routing in Vehicular Ad Hoc Networks (VANETs)," Energies, MDPI, vol. 16(3), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0214664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.