IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0210146.html
   My bibliography  Save this article

A proposal of prior probability-oriented clustering in feature encoding strategies

Author

Listed:
  • Yuki Shinomiya
  • Yukinobu Hoshino

Abstract

Codebook-based feature encodings are a standard framework for image recognition issues. A codebook is usually constructed by clusterings, such as the k-means and the Gaussian Mixture Model (GMM). A codebook size is an important factor to decide the trade-off between recognition performance and computational complexity and a traditional framework has the disadvantage to image recognition issues when a large codebook; the number of unique clusters becomes smaller than a designated codebook size because some clusters converge to close positions. This paper focusses on the disadvantage from a perspective of the distribution of prior probabilities and presents a clustering framework including two objectives that are alternated to the k-means and the GMM. Our approach is first evaluated with synthetic clustering datasets to analyze a difference to traditional clustering. In the experiment section, although our approach alternated to the k-means generates similar results to the k-means results, our approach is able to finely tune clusters for our objective. Our approach alternated to the GMM significantly improves our objective and constructs intuitively appropriate clusters, especially for huge and complicatedly distributed samples. In the experiment on image recognition issues, two state-of-the-art encodings, the Fisher Vector (FV) using the GMM and the Vector of Locally Aggregated Descriptors (VLAD) using the k-means, are evaluated with two publicly available image datasets, the Birds and the Butterflies. For the results of the VLAD with our approach, the recognition performances tend to be worse compared to the original VLAD results. On the other hand, the FV using our approach is able to improve the performance, especially in a larger codebook size.

Suggested Citation

  • Yuki Shinomiya & Yukinobu Hoshino, 2019. "A proposal of prior probability-oriented clustering in feature encoding strategies," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.
  • Handle: RePEc:plo:pone00:0210146
    DOI: 10.1371/journal.pone.0210146
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210146
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0210146&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0210146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0210146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.