IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0209925.html
   My bibliography  Save this article

Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode

Author

Listed:
  • Laura Guidetti
  • Marco Meucci
  • Francesco Bolletta
  • Gian Pietro Emerenziani
  • Maria Chiara Gallotta
  • Carlo Baldari

Abstract

Purpose: This study aimed to examine the validity, reliability and minimum detectable change (MDC) of the Cosmed K5 in breath by breath (BxB) mode, against VacuMed metabolic simulator. Intra and inter-units reliability was also assessed. Methods: Fourteen metabolic rates (from 0.9 to 4 L.min-1) were reproduced by a VacuMed system and pulmonary ventilation (VE), oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by two different K5 units. Validity was assessed by ordinary least products (OLP) regression analysis, Bland-Altman plots, intraclass correlation coefficients (ICC), mean percentage differences, technical errors (TE) and MDC for VE, VO2, and VCO2. Intra- and inter-K5 reliability was evaluated by absolute percentage differences between measurements (MAPE), ICCs, TE, and MDC. Results: Validity analysis from OLP regression data and Bland- Altman plots indicated high agreement between K5 and simulator. ICC values were excellent for all variables (>0.99). Mean percentage differences in VE (-0.50%, p = 0.11), VO2 (-0.04%, p = 0.80), and VCO2 (-1.03%, p = 0.09) showed no significant bias. The technical error (TE) ranged from 0.73% to 1.34% (VE and VCO2 respectively). MDC were lower than 4% (VE = 2.0%, VO2 = 3.8%, VCO2 = 3.7%). The intra and inter K5 reliability assessment reveled excellent ICCs (>0.99), MAPE

Suggested Citation

  • Laura Guidetti & Marco Meucci & Francesco Bolletta & Gian Pietro Emerenziani & Maria Chiara Gallotta & Carlo Baldari, 2018. "Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
  • Handle: RePEc:plo:pone00:0209925
    DOI: 10.1371/journal.pone.0209925
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209925
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0209925&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0209925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanna Zimatore & Maria Chiara Gallotta & Matteo Campanella & Piotr H. Skarzynski & Giuseppe Maulucci & Cassandra Serantoni & Marco De Spirito & Davide Curzi & Laura Guidetti & Carlo Baldari & Stavr, 2022. "Detecting Metabolic Thresholds from Nonlinear Analysis of Heart Rate Time Series: A Review," IJERPH, MDPI, vol. 19(19), pages 1-24, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0209925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.