IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0205214.html
   My bibliography  Save this article

DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure

Author

Listed:
  • Shuangxi Ji
  • Tuğçe Oruç
  • Liam Mead
  • Muhammad Fayyaz Rehman
  • Christopher Morton Thomas
  • Sam Butterworth
  • Peter James Winn

Abstract

Rapid, accurate prediction of protein structure from amino acid sequence would accelerate fields as diverse as drug discovery, synthetic biology and disease diagnosis. Massively improved prediction of protein structures has been driven by improving the prediction of the amino acid residues that contact in their 3D structure. For an average globular protein, around 92% of all residue pairs are non-contacting, therefore accurate prediction of only a small percentage of inter-amino acid distances could increase the number of constraints to guide structure determination. We have trained deep neural networks to predict inter-residue contacts and distances. Distances are predicted with an accuracy better than most contact prediction techniques. Addition of distance constraints improved de novo structure predictions for test sets of 158 protein structures, as compared to using the best contact prediction methods alone. Importantly, usage of distance predictions allows the selection of better models from the structure pool without a need for an external model assessment tool. The results also indicate how the accuracy of distance prediction methods might be improved further.

Suggested Citation

  • Shuangxi Ji & Tuğçe Oruç & Liam Mead & Muhammad Fayyaz Rehman & Christopher Morton Thomas & Sam Butterworth & Peter James Winn, 2019. "DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
  • Handle: RePEc:plo:pone00:0205214
    DOI: 10.1371/journal.pone.0205214
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205214
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0205214&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0205214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sheng Wang & Siqi Sun & Zhen Li & Renyu Zhang & Jinbo Xu, 2017. "Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-34, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Fa & Domenico Cozzetto & Cen Wan & David T Jones, 2018. "Predicting human protein function with multi-task deep neural networks," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    2. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Rahmatullah Roche & Sutanu Bhattacharya & Debswapna Bhattacharya, 2021. "Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-31, February.
    5. Juan A Morales-Cordovilla & Victoria Sanchez & Martin Ratajczak, 2018. "Protein alignment based on higher order conditional random fields for template-based modeling," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
    6. Shivangi & Laxman S Meena & Md Amjad Beg, 2018. "Insights of Rv2921c (Ftsy) Gene of Mycobacterium tuberculosis H37Rv To Prove Its Significance by Computational Approach," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(2), pages 9147-9157, December.
    7. Yang Li & Chengxin Zhang & Eric W Bell & Wei Zheng & Xiaogen Zhou & Dong-Jun Yu & Yang Zhang, 2021. "Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    8. Lei Wang & Jiangguo Zhang & Dali Wang & Chen Song, 2022. "Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-27, March.
    9. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Claudio Mirabello & Björn Wallner, 2019. "rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.