IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0201160.html
   My bibliography  Save this article

Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure

Author

Listed:
  • Valérie Boivin-Jahns
  • Kerstin Uhland
  • Hans-Peter Holthoff
  • Niklas Beyersdorf
  • Vladimir Kocoski
  • Thomas Kerkau
  • Götz Münch
  • Martin J Lohse
  • Martin Ungerer
  • Roland Jahns

Abstract

Rationale: Despite advances in pharmacotherapy, heart failure still incurs significant morbidity and mortality. Stimulating antibodies directed against the secondextracellular loop of the human ß1-adrenergic receptor (anti-ß1EC2) cause myocyte damage and heart failure in rats. This receptor domain is 100% homologous between rats and humans. Objective: ß1EC2-mimicking cyclopeptides (25-meric) markedly improved the development and/or course of anti-ß1EC2-mediated cardiomyopathy. Further developments should be investigated. Methods and results: The shortened 18-meric cyclic peptide COR-1, in which one of the two disulphide bonds was removed to enable reproducible GMP production, can also be used to treat cardiomyopathic rats. Echocardiography, catheterization and histopathology of the rat hearts revealed that monthly intravenous administrations of COR-1 almost fully reversed the cardiomyopathic phenotype within 6 months at doses of 1 to 4 mg/kg body weight. Administration of COR-1 resulted in markedly reduced anti-ß1EC2-expressing memory B lymphocytes in the spleen despite continued antigenic boosts, but did not significantly decrease overall peripheral anti-ß1EC2 titers. COR-1 did not induce any anti-ß1EC2 or other immune response in naïve rats (corresponding to findings in healthy human volunteers). It did not cause any toxic side effects in GLP studies in dogs, rats or mice, and the “no observed adverse effect level” (NOAEL) exceeded the therapeutic doses by 100-fold. Conclusion: The second generation immunomodulating epitope-mimicking cyclopeptide COR-1 (also termed JNJ-5442840) offers promise to treat immune-mediated cardiac diseases.

Suggested Citation

  • Valérie Boivin-Jahns & Kerstin Uhland & Hans-Peter Holthoff & Niklas Beyersdorf & Vladimir Kocoski & Thomas Kerkau & Götz Münch & Martin J Lohse & Martin Ungerer & Roland Jahns, 2018. "Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
  • Handle: RePEc:plo:pone00:0201160
    DOI: 10.1371/journal.pone.0201160
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201160
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0201160&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0201160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Søren G. F. Rasmussen & Hee-Jung Choi & Daniel M. Rosenbaum & Tong Sun Kobilka & Foon Sun Thian & Patricia C. Edwards & Manfred Burghammer & Venkata R. P. Ratnala & Ruslan Sanishvili & Robert F. Fisch, 2007. "Crystal structure of the human β2 adrenergic G-protein-coupled receptor," Nature, Nature, vol. 450(7168), pages 383-387, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nobuyoshi Nagamine & Takayuki Shirakawa & Yusuke Minato & Kentaro Torii & Hiroki Kobayashi & Masaya Imoto & Yasubumi Sakakibara, 2009. "Integrating Statistical Predictions and Experimental Verifications for Enhancing Protein-Chemical Interaction Predictions in Virtual Screening," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-11, June.
    2. Valérie Capra & Marta Busnelli & Alessandro Perenna & Manuela Ambrosio & Maria Rosa Accomazzo & Celine Galés & Bice Chini & G Enrico Rovati, 2013. "Full and Partial Agonists of Thromboxane Prostanoid Receptor Unveil Fine Tuning of Receptor Superactive Conformation and G Protein Activation," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-12, March.
    3. Holly J Atkinson & John H Morris & Thomas E Ferrin & Patricia C Babbitt, 2009. "Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.