IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0193586.html
   My bibliography  Save this article

Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China

Author

Listed:
  • Lijun Zhang
  • Changyi Guo
  • Xiaodong Jia
  • Huihui Xu
  • Meizhu Pan
  • Dong Xu
  • Xianbiao Shen
  • Jianghua Zhang
  • Jianguo Tan
  • Hailei Qian
  • Chunyang Dong
  • Yewen Shi
  • Xiaodan Zhou
  • Chen Wu

Abstract

Objective: The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. Methods: In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8–12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. Results: All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013

Suggested Citation

  • Lijun Zhang & Changyi Guo & Xiaodong Jia & Huihui Xu & Meizhu Pan & Dong Xu & Xianbiao Shen & Jianghua Zhang & Jianguo Tan & Hailei Qian & Chunyang Dong & Yewen Shi & Xiaodan Zhou & Chen Wu, 2018. "Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0193586
    DOI: 10.1371/journal.pone.0193586
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193586
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0193586&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0193586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lihui Huang & Zhongnan Pu & Mu Li & Jan Sundell, 2015. "Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Z. He & Xiange Zeng & Kaiyue Zhang & Patrick L. Kinney, 2017. "Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review," IJERPH, MDPI, vol. 14(2), pages 1-14, February.
    2. Ho-Hyun Kim & Min-Jung Kwak & Kwang-Jin Kim & Yoon-Kyung Gwak & Jeong-Hun Lee & Ho-Hyeong Yang, 2020. "Evaluation of IAQ Management Using an IoT-Based Indoor Garden," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    3. Yibing Yang & Liu Liu & Chunyu Xu & Na Li & Zhe Liu & Qin Wang & Dongqun Xu, 2018. "Source Apportionment and Influencing Factor Analysis of Residential Indoor PM 2.5 in Beijing," IJERPH, MDPI, vol. 15(4), pages 1-19, April.
    4. Christopher Johnes & Richard A. Sharpe & Tamaryn Menneer & Timothy Taylor & Penelope Nestel, 2023. "Using Sensor Data to Identify Factors Affecting Internal Air Quality within 279 Lower Income Households in Cornwall, South West of England," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    5. Haneen Khreis & Mark J. Nieuwenhuijsen, 2017. "Traffic-Related Air Pollution and Childhood Asthma: Recent Advances and Remaining Gaps in the Exposure Assessment Methods," IJERPH, MDPI, vol. 14(3), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.