IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188697.html
   My bibliography  Save this article

Colorectal cancer stages transcriptome analysis

Author

Listed:
  • Tianyao Huo
  • Ronald Canepa
  • Andrei Sura
  • François Modave
  • Yan Gong

Abstract

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths in the United States. The purpose of this study was to evaluate the gene expression differences in different stages of CRC. Gene expression data on 433 CRC patient samples were obtained from The Cancer Genome Atlas (TCGA). Gene expression differences were evaluated across CRC stages using linear regression. Genes with p≤0.001 in expression differences were evaluated further in principal component analysis and genes with p≤0.0001 were evaluated further in gene set enrichment analysis. A total of 377 patients with gene expression data in 20,532 genes were included in the final analysis. The numbers of patients in stage I through IV were 59, 147, 116 and 55, respectively. NEK4 gene, which encodes for NIMA related kinase 4, was differentially expressed across the four stages of CRC. The stage I patients had the highest expression of NEK4 genes, while the stage IV patients had the lowest expressions (p = 9*10−6). Ten other genes (RNF34, HIST3H2BB, NUDT6, LRCh4, GLB1L, HIST2H4A, TMEM79, AMIGO2, C20orf135 and SPSB3) had p value of 0.0001 in the differential expression analysis. Principal component analysis indicated that the patients from the 4 clinical stages do not appear to have distinct gene expression pattern. Network-based and pathway-based gene set enrichment analyses showed that these 11 genes map to multiple pathways such as meiotic synapsis and packaging of telomere ends, etc. Ten of these 11 genes were linked to Gene Ontology terms such as nucleosome, DNA packaging complex and protein-DNA interactions. The protein complex-based gene set analysis showed that four genes were involved in H2AX complex II. This study identified a small number of genes that might be associated with clinical stages of CRC. Our analysis was not able to find a molecular basis for the current clinical staging for CRC based on the gene expression patterns.

Suggested Citation

  • Tianyao Huo & Ronald Canepa & Andrei Sura & François Modave & Yan Gong, 2017. "Colorectal cancer stages transcriptome analysis," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-11, November.
  • Handle: RePEc:plo:pone00:0188697
    DOI: 10.1371/journal.pone.0188697
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188697
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188697&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.