IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0179256.html
   My bibliography  Save this article

Base-rate sensitivity through implicit learning

Author

Listed:
  • Andrew J Wismer
  • Corey J Bohil

Abstract

Two experiments assessed the contributions of implicit and explicit learning to base-rate sensitivity. Using a factorial design that included both implicit and explicit learning disruptions, we tested the hypothesis that implicit learning underlies base-rate sensitivity from experience (and that explicit learning contributes comparatively little). Participants learned to classify two categories of simple stimuli (bar graph heights) presented in a 3:1 base-rate ratio. Participants learned either from “observational” training to disrupt implicit learning or “response” training which supports implicit learning. Category label feedback on each trial was followed either immediately or after a 2.5 second delay by onset of a working memory task intended to disrupt explicit reasoning about category membership feedback. Decision criterion values were significantly larger following response training, suggesting that implicit learning underlies base-rate sensitivity. Disrupting explicit processing had no effect on base-rate learning as long as implicit learning was supported. These results suggest base-rate sensitivity develops from experience primarily through implicit learning, consistent with separate learning systems accounts of categorization.

Suggested Citation

  • Andrew J Wismer & Corey J Bohil, 2017. "Base-rate sensitivity through implicit learning," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0179256
    DOI: 10.1371/journal.pone.0179256
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179256
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0179256&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0179256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0179256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.