IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0178029.html
   My bibliography  Save this article

Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model

Author

Listed:
  • Liang Yang
  • Meng Ge
  • Di Jin
  • Dongxiao He
  • Huazhu Fu
  • Jing Wang
  • Xiaochun Cao

Abstract

Due to the demand for performance improvement and the existence of prior information, semi-supervised community detection with pairwise constraints becomes a hot topic. Most existing methods have been successfully encoding the must-link constraints, but neglect the opposite ones, i.e., the cannot-link constraints, which can force the exclusion between nodes. In this paper, we are interested in understanding the role of cannot-link constraints and effectively encoding pairwise constraints. Towards these goals, we define an integral generative process jointly considering the network topology, must-link and cannot-link constraints. We propose to characterize this process as a Multi-variance Mixed Gaussian Generative (MMGG) Model to address diverse degrees of confidences that exist in network topology and pairwise constraints and formulate it as a weighted nonnegative matrix factorization problem. The experiments on artificial and real-world networks not only illustrate the superiority of our proposed MMGG, but also, most importantly, reveal the roles of pairwise constraints. That is, though the must-link is more important than cannot-link when either of them is available, both must-link and cannot-link are equally important when both of them are available. To the best of our knowledge, this is the first work on discovering and exploring the importance of cannot-link constraints in semi-supervised community detection.

Suggested Citation

  • Liang Yang & Meng Ge & Di Jin & Dongxiao He & Huazhu Fu & Jing Wang & Xiaochun Cao, 2017. "Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
  • Handle: RePEc:plo:pone00:0178029
    DOI: 10.1371/journal.pone.0178029
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178029
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0178029&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0178029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ma, Xiaoke & Gao, Lin & Yong, Xuerong & Fu, Lidong, 2010. "Semi-supervised clustering algorithm for community structure detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 187-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Wei & Jiao, Pengfei & Wang, Wenjun & Yu, Yang & Chen, Xue & Pan, Lin, 2019. "A novel evolutionary clustering via the first-order varying information for dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 507-520.
    2. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Hong & Sang, Xiaoshuang & Zhao, Qinghua & Lu, Jianfeng, 2020. "Community detection algorithm based on nonnegative matrix factorization and pairwise constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Li, Yafang & Jia, Caiyan & Li, Jianqiang & Wang, Xiaoyang & Yu, Jian, 2018. "Enhanced semi-supervised community detection with active node and link selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 219-232.
    3. Da Kuang & Sangwoon Yun & Haesun Park, 2015. "SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering," Journal of Global Optimization, Springer, vol. 62(3), pages 545-574, July.
    4. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
    5. Ning, Yi-Zi & Liu, Xin & Cheng, Hui-Min & Zhang, Zhong-Yuan, 2020. "Effects of social network structures and behavioral responses on the spread of infectious diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Ma, Xiaoke & Li, Dongyuan & Tan, Shiyin & Huang, Zhihao, 2019. "Detecting evolving communities in dynamic networks using graph regularized evolutionary nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C), pages 1-1.
    7. Guo, Wei-Feng & Zhang, Shao-Wu, 2016. "A general method of community detection by identifying community centers with affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 508-519.
    8. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Overlapping community detection using neighborhood ratio matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 510-521.
    9. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    10. Chen, Zigang & Li, Lixiang & Peng, Haipeng & Liu, Yuhong & Yang, Yixian, 2018. "Attributed community mining using joint general non-negative matrix factorization with graph Laplacian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 324-335.
    11. Fengqin Tang & Xuejing Zhao & Cuixia Li, 2023. "Community Detection in Multilayer Networks Based on Matrix Factorization and Spectral Embedding Method," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    12. Chen, Chunchun & Zhu, Wenjie & Peng, Bo, 2022. "Differentiated graph regularized non-negative matrix factorization for semi-supervised community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Ma, Xiaoke & Wang, Bingbo & Yu, Liang, 2018. "Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 786-802.
    14. Liu, Dong & Liu, Xiao & Wang, Wenjun & Bai, Hongyu, 2014. "Semi-supervised community detection based on discrete potential theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 173-182.
    15. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    16. Shen, Yi, 2014. "The similarity of weights on edges and discovering of community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 560-570.
    17. Li, Yafang & Jia, Caiyan & Yu, Jian, 2015. "A parameter-free community detection method based on centrality and dispersion of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 321-334.
    18. Cheng, Hui-Min & Li, Si-Yan & Ning, Yi-Zi & Chen, Xing & Pan, Rui & Zhang, Zhong-Yuan, 2020. "Analysis on utilization of Beijing local roads using taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0178029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.