IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166755.html
   My bibliography  Save this article

Improved Genetic Profiling of Anthropometric Traits Using a Big Data Approach

Author

Listed:
  • Oriol Canela-Xandri
  • Konrad Rawlik
  • John A Woolliams
  • Albert Tenesa

Abstract

Genome-wide association studies (GWAS) promised to translate their findings into clinically beneficial improvements of patient management by tailoring disease management to the individual through the prediction of disease risk. However, the ability to translate genetic findings from GWAS into predictive tools that are of clinical utility and which may inform clinical practice has, so far, been encouraging but limited. Here we propose to use a more powerful statistical approach, the use of which has traditionally been limited due to computational requirements and lack of sufficiently large individual level genotyped cohorts, but which improve the prediction of multiple medically relevant phenotypes using the same panel of SNPs. As a proof of principle, we used a shared panel of 319,038 common SNPs with MAF > 0.05 to train the prediction models in 114,264 unrelated White-British individuals for height and four obesity related traits (body mass index, basal metabolic rate, body fat percentage, and waist-to-hip ratio). We obtained prediction accuracies that ranged between 46% and 75% of the maximum achievable given the captured heritable component. For height, this represents an improvement in prediction accuracy of up to 68% (184% more phenotypic variance explained) over SNPs reported to be robustly associated with height in a previous GWAS meta-analysis of similar size. Across-population predictions in White non-British individuals were similar to those in White-British whilst those in Asian and Black individuals were informative but less accurate. We estimate that the genotyping of circa 500,000 unrelated individuals will yield predictions between 66% and 82% of the SNP-heritability captured by common variants in our array. Prediction accuracies did not improve when including rarer SNPs or when fitting multiple traits jointly in multivariate models.

Suggested Citation

  • Oriol Canela-Xandri & Konrad Rawlik & John A Woolliams & Albert Tenesa, 2016. "Improved Genetic Profiling of Anthropometric Traits Using a Big Data Approach," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
  • Handle: RePEc:plo:pone00:0166755
    DOI: 10.1371/journal.pone.0166755
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166755
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166755&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oriol Canela-Xandri & Andy Law & Alan Gray & John A. Woolliams & Albert Tenesa, 2015. "A new tool called DISSECT for analysing large genomic data sets using a Big Data approach," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.