IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0146925.html
   My bibliography  Save this article

A Noise-Filtering Method for Link Prediction in Complex Networks

Author

Listed:
  • Bo Ouyang
  • Lurong Jiang
  • Zhaosheng Teng

Abstract

Link prediction plays an important role in both finding missing links in networked systems and complementing our understanding of the evolution of networks. Much attention from the network science community are paid to figure out how to efficiently predict the missing/future links based on the observed topology. Real-world information always contain noise, which is also the case in an observed network. This problem is rarely considered in existing methods. In this paper, we treat the existence of observed links as known information. By filtering out noises in this information, the underlying regularity of the connection information is retrieved and then used to predict missing or future links. Experiments on various empirical networks show that our method performs noticeably better than baseline algorithms.

Suggested Citation

  • Bo Ouyang & Lurong Jiang & Zhaosheng Teng, 2016. "A Noise-Filtering Method for Link Prediction in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0146925
    DOI: 10.1371/journal.pone.0146925
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146925
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0146925&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0146925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2012. "Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation," Papers 1210.4973, arXiv.org, revised Jan 2013.
    2. Fragkiskos Papadopoulos & Maksim Kitsak & M. Ángeles Serrano & Marián Boguñá & Dmitri Krioukov, 2012. "Popularity versus similarity in growing networks," Nature, Nature, vol. 489(7417), pages 537-540, September.
    3. Qian-Ming Zhang & Linyuan Lü & Wen-Qiang Wang & Yu-Xiao & Tao Zhou, 2013. "Potential Theory for Directed Networks," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    4. Du, Wen-Bo & Gao, Yang & Liu, Chen & Zheng, Zheng & Wang, Zhen, 2015. "Adequate is better: particle swarm optimization with limited-information," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 832-838.
    5. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Bo & Teng, Zhaosheng & Tang, Qiu, 2016. "Dynamics in local influence cascading models," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 182-186.
    2. Li, Zhenpeng & Tang, Xijin, 2019. "Robustness of complex networks to cascading failures induced by Poisson fluctuating loads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.
    4. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    5. Pawanesh Pawanesh & Charu Sharma & Niteesh Sahni, 2025. "Analyzing Communicability and Connectivity in the Indian Stock Market During Crises," Papers 2502.08242, arXiv.org.
    6. Peter Bou Saba & Régis Meissonier, 2016. "Conflict contagion effects from previous IT projects: action research during preliminary phases of a DST implementation project [Effets de contagion de conflits de projets TI antérieurs:Une recherc," Post-Print hal-02161336, HAL.
    7. Marc van Kralingen & Diego Garlaschelli & Karolina Scholtus & Iman van Lelyveld, 2020. "Crowded trades, market clustering, and price instability," Papers 2002.03319, arXiv.org.
    8. Qingchun Li & Shangjia Dong & Ali Mostafavi, 2019. "Modeling of inter-organizational coordination dynamics in resilience planning of infrastructure systems: A multilayer network simulation framework," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-21, November.
    9. Carlos León, 2020. "Banks in Colombia: How Homogeneous Are They?," Revista de Economía del Rosario, Universidad del Rosario, vol. 23(2), pages 1-32, December.
    10. Rodrigo César de Castro Miranda & Benjamin Miranda Tabak, 2013. "Contagion Risk within Firm-Bank Bivariate Networks," Working Papers Series 322, Central Bank of Brazil, Research Department.
    11. Wu, Congcong & Gao, Xiangyun & Xi, Xian & Zhao, Yiran & Li, Yu, 2021. "The stability optimization of the international lithium trade," Resources Policy, Elsevier, vol. 74(C).
    12. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    13. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    14. Vahid Mojtahed & Carlo Giupponi & Claudio Biscaro & Animesh K. Gain & Stefano Balbi, 2013. "Integrated Assessment of Natural Hazards and Climate-Change Adaptation: II. The SERRA Methodology," Working Papers 2013:07, Department of Economics, University of Venice "Ca' Foscari".
    15. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    16. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    17. Ramadiah, Amanah & Fricke, Daniel & Caccioli, Fabio, 2022. "Backtesting macroprudential stress tests," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    18. Nguyen, Tung T. & Budzinski, Roberto C. & Pasini, Federico W. & Delabays, Robin & Mináč, Ján & Muller, Lyle E., 2023. "Broadcasting solutions on networked systems of phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Sam Langfield & Kimmo Soramäki, 2016. "Interbank Exposure Networks," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 3-17, January.
    20. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0146925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.