Author
Listed:
- Jagat Singh Chauhan
- Sandeep Kumar Dhanda
- Deepak Singla
- Open Source Drug Discovery Consortium
- Subhash M Agarwal
- Gajendra P S Raghava
Abstract
Overexpression of EGFR is responsible for causing a number of cancers, including lung cancer as it activates various downstream signaling pathways. Thus, it is important to control EGFR function in order to treat the cancer patients. It is well established that inhibiting ATP binding within the EGFR kinase domain regulates its function. The existing quinazoline derivative based drugs used for treating lung cancer that inhibits the wild type of EGFR. In this study, we have made a systematic attempt to develop QSAR models for designing quinazoline derivatives that could inhibit wild EGFR and imidazothiazoles/pyrazolopyrimidines derivatives against mutant EGFR. In this study, three types of prediction methods have been developed to design inhibitors against EGFR (wild, mutant and both). First, we developed models for predicting inhibitors against wild type EGFR by training and testing on dataset containing 128 quinazoline based inhibitors. This dataset was divided into two subsets called wild_train and wild_valid containing 103 and 25 inhibitors respectively. The models were trained and tested on wild_train dataset while performance was evaluated on the wild_valid called validation dataset. We achieved a maximum correlation between predicted and experimentally determined inhibition (IC50) of 0.90 on validation dataset. Secondly, we developed models for predicting inhibitors against mutant EGFR (L858R) on mutant_train, and mutant_valid dataset and achieved a maximum correlation between 0.834 to 0.850 on these datasets. Finally, an integrated hybrid model has been developed on a dataset containing wild and mutant inhibitors and got maximum correlation between 0.761 to 0.850 on different datasets. In order to promote open source drug discovery, we developed a webserver for designing inhibitors against wild and mutant EGFR along with providing standalone (http://osddlinux.osdd.net/) and Galaxy (http://osddlinux.osdd.net:8001) version of software. We hope our webserver (http://crdd.osdd.net/oscadd/ntegfr/) will play a vital role in designing new anticancer drugs.
Suggested Citation
Jagat Singh Chauhan & Sandeep Kumar Dhanda & Deepak Singla & Open Source Drug Discovery Consortium & Subhash M Agarwal & Gajendra P S Raghava, 2014.
"QSAR-Based Models for Designing Quinazoline/Imidazothiazoles/Pyrazolopyrimidines Based Inhibitors against Wild and Mutant EGFR,"
PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
Handle:
RePEc:plo:pone00:0101079
DOI: 10.1371/journal.pone.0101079
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0101079. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.