IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0085678.html
   My bibliography  Save this article

istar: A Web Platform for Large-Scale Protein-Ligand Docking

Author

Listed:
  • Hongjian Li
  • Kwong-Sak Leung
  • Pedro J Ballester
  • Man-Hon Wong

Abstract

Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar is freely available at http://istar.cse.cuhk.edu.hk/idock.

Suggested Citation

  • Hongjian Li & Kwong-Sak Leung & Pedro J Ballester & Man-Hon Wong, 2014. "istar: A Web Platform for Large-Scale Protein-Ligand Docking," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0085678
    DOI: 10.1371/journal.pone.0085678
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085678
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0085678&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0085678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo Quiroga & Marcos A Villarreal, 2016. "Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0085678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.