IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0081114.html
   My bibliography  Save this article

The Mouse Age Phenome Knowledgebase and Disease-Specific Inter-Species Age Mapping

Author

Listed:
  • Nophar Geifman
  • Eitan Rubin

Abstract

Background: Similarities between mice and humans lead to generation of many mouse models of human disease. However, differences between the species often result in mice being unreliable as preclinical models for human disease. One difference that might play a role in lowering the predictivity of mice models to human diseases is age. Despite the important role age plays in medicine, it is too often considered only casually when considering mouse models. Methods: We developed the mouse-Age Phenotype Knowledgebase, which holds knowledge about age-related phenotypic patterns in mice. The knowledgebase was extensively populated with literature-derived data using text mining techniques. We then mapped between ages in humans and mice by comparing the age distribution pattern for 887 diseases in both species. Results: The knowledgebase was populated with over 9800 instances generated by a text-mining pipeline. The quality of the data was manually evaluated, and was found to be of high accuracy (estimated precision >86%). Furthermore, grouping together diseases that share similar age patterns in mice resulted in clusters that mirror actual biomedical knowledge. Using these data, we matched age distribution patterns in mice and in humans, allowing for age differences by shifting either of the patterns. High correlation (r2>0.5) was found for 223 diseases. The results clearly indicate a difference in the age mapping between different diseases: age 30 years in human is mapped to 120 days in mice for Leukemia, but to 295 days for Anemia. Based on these results we generated a mice-to-human age map which is publicly available. Conclusions: We present here the development of the mouse-APK, its population with literature-derived data and its use to map ages in mice and human for 223 diseases. These results present a further step made to bridging the gap between humans and mice in biomedical research.

Suggested Citation

  • Nophar Geifman & Eitan Rubin, 2013. "The Mouse Age Phenome Knowledgebase and Disease-Specific Inter-Species Age Mapping," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0081114
    DOI: 10.1371/journal.pone.0081114
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081114
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0081114&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0081114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0081114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.