IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0061468.html
   My bibliography  Save this article

Pharmacointeraction Network Models Predict Unknown Drug-Drug Interactions

Author

Listed:
  • Aurel Cami
  • Shannon Manzi
  • Alana Arnold
  • Ben Y Reis

Abstract

Drug-drug interactions (DDIs) can lead to serious and potentially lethal adverse events. In recent years, several drugs have been withdrawn from the market due to interaction-related adverse events (AEs). Current methods for detecting DDIs rely on the accumulation of sufficient clinical evidence in the post-market stage – a lengthy process that often takes years, during which time numerous patients may suffer from the adverse effects of the DDI. Detection methods are further hindered by the extremely large combinatoric space of possible drug-drug-AE combinations. There is therefore a practical need for predictive tools that can identify potential DDIs years in advance, enabling drug safety professionals to better prioritize their limited investigative resources and take appropriate regulatory action. To meet this need, we describe Predictive Pharmacointeraction Networks (PPINs) – a novel approach that predicts unknown DDIs by exploiting the network structure of all known DDIs, together with other intrinsic and taxonomic properties of drugs and AEs. We constructed an 856-drug DDI network from a 2009 snapshot of a widely-used drug safety database, and used it to develop PPIN models for predicting future DDIs. We compared the DDIs predicted based solely on these 2009 data, with newly reported DDIs that appeared in a 2012 snapshot of the same database. Using a standard multivariate approach to combine predictors, the PPIN model achieved an AUROC (area under the receiver operating characteristic curve) of 0.81 with a sensitivity of 48% given a specificity of 90%. An analysis of DDIs by severity level revealed that the model was most effective for predicting “contraindicated” DDIs (AUROC = 0.92) and less effective for “minor” DDIs (AUROC = 0.63). These results indicate that network based methods can be useful for predicting unknown drug-drug interactions.

Suggested Citation

  • Aurel Cami & Shannon Manzi & Alana Arnold & Ben Y Reis, 2013. "Pharmacointeraction Network Models Predict Unknown Drug-Drug Interactions," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
  • Handle: RePEc:plo:pone00:0061468
    DOI: 10.1371/journal.pone.0061468
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061468
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0061468&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0061468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0061468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.