IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0059896.html
   My bibliography  Save this article

Surfactant Protein-A Modulates LPS-Induced TLR4 Localization and Signaling via β-Arrestin 2

Author

Listed:
  • Vicky Sender
  • Linda Lang
  • Cordula Stamme

Abstract

The soluble C-type lectin surfactant protein (SP)-A mediates lung immune responses partially via its direct effects on alveolar macrophages (AM), the main resident leukocytes exposed to antigens. SP-A modulates the AM threshold of lipopolysaccharide (LPS) activity towards an anti-inflammatory phenotype both in vitro and in vivo through various mechanisms. LPS responses are tightly regulated via distinct pathways including subcellular TLR4 localization and thus ligand sensing. The cytosolic scaffold and signaling protein β-arrestin 2 acts as negative regulator of LPS-induced TLR4 activation. Here we show that SP-A neither increases TLR4 abundancy nor co-localizes with TLR4 in primary AM. SP-A significantly reduces the LPS-induced co-localization of TLR4 with the early endosome antigen (EEA) 1 by promoting the co-localization of TLR4 with the post-Golgi compartment marker Vti1b in freshly isolated AM from rats and wild-type (WT) mice, but not in β-arrestin 2−/− AM. Compared to WT mice pulmonary LPS-induced TNF-α release in β-arrestin 2−/− mice is accelerated and enhanced and exogenous SP-A fails to inhibit both lung LPS-induced TNF-α release and TLR4/EEA1 positioning. SP-A, but not LPS, enhances β-arrestin 2 protein expression in a time-dependent manner in primary rat AM. The constitutive expression of β-arrestin 2 in AM from SP-A−/− mice is significantly reduced compared to SP-A+/+ mice and is rescued by SP-A. Prolonged endosome retention of LPS-induced TLR4 in AM from SP-A−/− mice is restored by exogenous SP-A, and is antagonized by β-arrestin 2 blocking peptides. LPS induces β-arrestin 2/TLR4 association in primary AM which is further enhanced by SP-A. The data demonstrate that SP-A modulates LPS-induced TLR4 trafficking and signaling in vitro and in vivo engaging β-arrestin 2.

Suggested Citation

  • Vicky Sender & Linda Lang & Cordula Stamme, 2013. "Surfactant Protein-A Modulates LPS-Induced TLR4 Localization and Signaling via β-Arrestin 2," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-12, March.
  • Handle: RePEc:plo:pone00:0059896
    DOI: 10.1371/journal.pone.0059896
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059896
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0059896&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0059896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0059896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.