IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0034206.html
   My bibliography  Save this article

Unique Cell Type-Specific Junctional Complexes in Vascular Endothelium of Human and Rat Liver Sinusoids

Author

Listed:
  • Cyrill Géraud
  • Konstantin Evdokimov
  • Beate K Straub
  • Wiebke K Peitsch
  • Alexandra Demory
  • Yvette Dörflinger
  • Kai Schledzewski
  • Astrid Schmieder
  • Peter Schemmer
  • Hellmut G Augustin
  • Peter Schirmacher
  • Sergij Goerdt

Abstract

Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

Suggested Citation

  • Cyrill Géraud & Konstantin Evdokimov & Beate K Straub & Wiebke K Peitsch & Alexandra Demory & Yvette Dörflinger & Kai Schledzewski & Astrid Schmieder & Peter Schemmer & Hellmut G Augustin & Peter Schi, 2012. "Unique Cell Type-Specific Junctional Complexes in Vascular Endothelium of Human and Rat Liver Sinusoids," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-12, April.
  • Handle: RePEc:plo:pone00:0034206
    DOI: 10.1371/journal.pone.0034206
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034206
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0034206&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0034206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bi-Sen Ding & Daniel J. Nolan & Jason M. Butler & Daylon James & Alexander O. Babazadeh & Zev Rosenwaks & Vivek Mittal & Hideki Kobayashi & Koji Shido & David Lyden & Thomas N. Sato & Sina Y. Rabbany , 2010. "Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration," Nature, Nature, vol. 468(7321), pages 310-315, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Germán Belenguer & Gianmarco Mastrogiovanni & Clare Pacini & Zoe Hall & Anna M. Dowbaj & Robert Arnes-Benito & Aleksandra Sljukic & Nicole Prior & Sofia Kakava & Charles R. Bradshaw & Susan Davies & M, 2022. "RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Linda Große-Segerath & Paula Follert & Kristina Behnke & Julia Ettich & Tobias Buschmann & Philip Kirschner & Sonja Hartwig & Stefan Lehr & Mortimer Korf-Klingebiel & Daniel Eberhard & Nadja Lehwald-T, 2024. "Identification of myeloid-derived growth factor as a mechanically-induced, growth-promoting angiocrine signal for human hepatocytes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Hirotoki Ohkubo & Yoshiya Ito & Tsutomu Minamino & Koji Eshima & Ken Kojo & Shin-ichiro Okizaki & Mitsuhiro Hirata & Masabumi Shibuya & Masahiko Watanabe & Masataka Majima, 2014. "VEGFR1-Positive Macrophages Facilitate Liver Repair and Sinusoidal Reconstruction after Hepatic Ischemia/Reperfusion Injury," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0034206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.