IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0026308.html
   My bibliography  Save this article

A New Euler's Formula for DNA Polyhedra

Author

Listed:
  • Guang Hu
  • Wen-Yuan Qiu
  • Arnout Ceulemans

Abstract

DNA polyhedra are cage-like architectures based on interlocked and interlinked DNA strands. We propose a formula which unites the basic features of these entangled structures. It is based on the transformation of the DNA polyhedral links into Seifert surfaces, which removes all knots. The numbers of components , of crossings , and of Seifert circles are related by a simple and elegant formula: . This formula connects the topological aspects of the DNA cage to the Euler characteristic of the underlying polyhedron. It implies that Seifert circles can be used as effective topological indices to describe polyhedral links. Our study demonstrates that, the new Euler's formula provides a theoretical framework for the stereo-chemistry of DNA polyhedra, which can characterize enzymatic transformations of DNA and be used to characterize and design novel cages with higher genus.

Suggested Citation

  • Guang Hu & Wen-Yuan Qiu & Arnout Ceulemans, 2011. "A New Euler's Formula for DNA Polyhedra," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-6, October.
  • Handle: RePEc:plo:pone00:0026308
    DOI: 10.1371/journal.pone.0026308
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026308
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0026308&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0026308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shawn M. Douglas & Hendrik Dietz & Tim Liedl & Björn Högberg & Franziska Graf & William M. Shih, 2009. "Self-assembly of DNA into nanoscale three-dimensional shapes," Nature, Nature, vol. 459(7245), pages 414-418, May.
    2. Yu He & Tao Ye & Min Su & Chuan Zhang & Alexander E. Ribbe & Wen Jiang & Chengde Mao, 2008. "Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra," Nature, Nature, vol. 452(7184), pages 198-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Chen & Xingfei Wei & Molly F. Parsons & Jiajia Guo & James L. Banal & Yinong Zhao & Madelyn N. Scott & Gabriela S. Schlau-Cohen & Rigoberto Hernandez & Mark Bathe, 2022. "Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Martina F. Ober & Anna Baptist & Lea Wassermann & Amelie Heuer-Jungemann & Bert Nickel, 2022. "In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Francis Schuknecht & Karol Kołątaj & Michael Steinberger & Tim Liedl & Theobald Lohmueller, 2023. "Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. A. Mills & N. Aissaoui & D. Maurel & J. Elezgaray & F. Morvan & J. J. Vasseur & E. Margeat & R. B. Quast & J. Lai Kee-Him & N. Saint & C. Benistant & A. Nord & F. Pedaci & G. Bellot, 2022. "A modular spring-loaded actuator for mechanical activation of membrane proteins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Ioanna Smyrlaki & Ferenc Fördős & Iris Rocamonde-Lago & Yang Wang & Boxuan Shen & Antonio Lentini & Vincent C. Luca & Björn Reinius & Ana I. Teixeira & Björn Högberg, 2024. "Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Eva Bertosin & Christopher M. Maffeo & Thomas Drexler & Maximilian N. Honemann & Aleksei Aksimentiev & Hendrik Dietz, 2021. "A nanoscale reciprocating rotary mechanism with coordinated mobility control," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Linlin Tang & Zhijin Tian & Jin Cheng & Yijing Zhang & Yongxiu Song & Yan Liu & Jinghao Wang & Pengfei Zhang & Yonggang Ke & Friedrich C. Simmel & Jie Song, 2023. "Circular single-stranded DNA as switchable vector for gene expression in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Hui San Ong & Mohd Syafiq Rahim & Mohd Firdaus-Raih & Effirul Ikhwan Ramlan, 2015. "DNA Tetrominoes: The Construction of DNA Nanostructures Using Self-Organised Heterogeneous Deoxyribonucleic Acids Shapes," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    13. Xiaojun Ding & Jing Chen & Gang Ye, 2024. "Supramolecular polynuclear clusters sustained cubic hydrogen bonded frameworks with octahedral cages for reversible photochromism," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Shivendra Pandey & Daniel Johnson & Ryan Kaplan & Joseph Klobusicky & Govind Menon & David H Gracias, 2014. "Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    15. Jae Young Lee & Heeyuen Koh & Do-Nyun Kim, 2023. "A computational model for structural dynamics and reconfiguration of DNA assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Le Luo & Swathi Manda & Yunjeong Park & Busra Demir & Jesse Sanchez & M. P. Anantram & Ersin Emre Oren & Ashwin Gopinath & Marco Rolandi, 2023. "DNA nanopores as artificial membrane channels for bioprotonics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Jessica A. Kretzmann & Anna Liedl & Alba Monferrer & Volodymyr Mykhailiuk & Samuel Beerkens & Hendrik Dietz, 2023. "Gene-encoding DNA origami for mammalian cell expression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Zhao Zhang & Zhaomeng Feng & Xiaowei Zhao & Dominique Jean & Zhiheng Yu & Edwin R. Chapman, 2023. "Functionalization and higher-order organization of liposomes with DNA nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0026308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.