IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0024583.html
   My bibliography  Save this article

MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method

Author

Listed:
  • Ramkrishna Mitra
  • Sanghamitra Bandyopadhyay

Abstract

Background: Machine learning based miRNA-target prediction algorithms often fail to obtain a balanced prediction accuracy in terms of both sensitivity and specificity due to lack of the gold standard of negative examples, miRNA-targeting site context specific relevant features and efficient feature selection process. Moreover, all the sequence, structure and machine learning based algorithms are unable to distribute the true positive predictions preferentially at the top of the ranked list; hence the algorithms become unreliable to the biologists. In addition, these algorithms fail to obtain considerable combination of precision and recall for the target transcripts that are translationally repressed at protein level. Methodology/Principal Finding: In the proposed article, we introduce an efficient miRNA-target prediction system MultiMiTar, a Support Vector Machine (SVM) based classifier integrated with a multiobjective metaheuristic based feature selection technique. The robust performance of the proposed method is mainly the result of using high quality negative examples and selection of biologically relevant miRNA-targeting site context specific features. The features are selected by using a novel feature selection technique AMOSA-SVM, that integrates the multi objective optimization technique Archived Multi-Objective Simulated Annealing (AMOSA) and SVM. Conclusions/Significance: MultiMiTar is found to achieve much higher Matthew’s correlation coefficient (MCC) of 0.583 and average class-wise accuracy (ACA) of 0.8 compared to the others target prediction methods for a completely independent test data set. The obtained MCC and ACA values of these algorithms range from −0.269 to 0.155 and 0.321 to 0.582, respectively. Moreover, it shows a more balanced result in terms of precision and sensitivity (recall) for the translationally repressed data set as compared to all the other existing methods. An important aspect is that the true positive predictions are distributed preferentially at the top of the ranked list that makes MultiMiTar reliable for the biologists. MultiMiTar is now available as an online tool at www.isical.ac.in/~bioinfo_miu/multimitar.htm. MultiMiTar software can be downloaded from www.isical.ac.in/~bioinfo_miu/multimitar-download.htm.

Suggested Citation

  • Ramkrishna Mitra & Sanghamitra Bandyopadhyay, 2011. "MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0024583
    DOI: 10.1371/journal.pone.0024583
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024583
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0024583&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0024583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthias Selbach & Björn Schwanhäusser & Nadine Thierfelder & Zhuo Fang & Raya Khanin & Nikolaus Rajewsky, 2008. "Widespread changes in protein synthesis induced by microRNAs," Nature, Nature, vol. 455(7209), pages 58-63, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana R Mendoza & Guilherme C da Fonseca & Guilherme Loss-Morais & Ronnie Alves & Rogerio Margis & Ana L C Bazzan, 2013. "RFMirTarget: Predicting Human MicroRNA Target Genes with a Random Forest Classifier," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-18, July.
    2. Bhattacharyya Malay & Feuerbach Lars & Bhadra Tapas & Lengauer Thomas & Bandyopadhyay Sanghamitra, 2012. "MicroRNA Transcription Start Site Prediction with Multi-objective Feature Selection," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Lyon & Maria Angeles Castillejo & Christiana Staudinger & Wolfram Weckwerth & Stefanie Wienkoop & Volker Egelhofer, 2014. "Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    2. W.L. Bai & Y.L. Dang & R.H. Yin & R.L. Yin & W.Q. Jiang & Z.Y. Wang & Y.B. Zhu & J.J. Wang & Z.H. Zhao & G.B. Luo, 2016. "Combination of let-7d-5p, miR-26a-5p, and miR-15a-5p is suitable normalizer for studying microRNA expression in skin tissue of Liaoning cashmere goat during hair follicle cycle," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 61(3), pages 99-107.
    3. Adam A Margolin & Shao-En Ong & Monica Schenone & Robert Gould & Stuart L Schreiber & Steven A Carr & Todd R Golub, 2009. "Empirical Bayes Analysis of Quantitative Proteomics Experiments," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-15, October.
    4. Chikako Ragan & Michael Zuker & Mark A Ragan, 2011. "Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    5. Peng Wang & Shangwei Ning & Qianghu Wang & Ronghong Li & Jingrun Ye & Zuxianglan Zhao & Yan Li & Teng Huang & Xia Li, 2013. "mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    6. Panagiotis Alexiou & Manolis Maragkakis & Giorgio L Papadopoulos & Victor A Simmosis & Lin Zhang & Artemis G Hatzigeorgiou, 2010. "The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-7, February.
    7. Wenliang Zhu & Xuan Kan, 2014. "Neural Network Cascade Optimizes MicroRNA Biomarker Selection for Nasopharyngeal Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    8. Yuheng Lu & Christina S Leslie, 2016. "Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-18, July.
    9. Parawee Lekprasert & Michael Mayhew & Uwe Ohler, 2011. "Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
    10. Jana Zecha & Wassim Gabriel & Ria Spallek & Yun-Chien Chang & Julia Mergner & Mathias Wilhelm & Florian Bassermann & Bernhard Kuster, 2022. "Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Urmo Võsa & Tõnu Esko & Silva Kasela & Tarmo Annilo, 2015. "Altered Gene Expression Associated with microRNA Binding Site Polymorphisms," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    12. Zhdanov, Vladimir P., 2010. "ncRNA-mediated bistability in the synthesis of hundreds of distinct mRNAs and proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 887-890.
    13. Ray M Marín & Jiří Vaníček, 2012. "Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    14. Youjia Hua & Shiwei Duan & Andrea E Murmann & Niels Larsen & Jørgen Kjems & Anders H Lund & Marcus E Peter, 2011. "miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    15. Yasemin Oztemur & Tufan Bekmez & Alp Aydos & Isik G Yulug & Betul Bozkurt & Bala Gur Dedeoglu, 2015. "A Ranking-Based Meta-Analysis Reveals Let-7 Family as a Meta-Signature for Grade Classification in Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    16. Evelyn Zacharewicz & Paul Della Gatta & John Reynolds & Andrew Garnham & Tamsyn Crowley & Aaron P Russell & Séverine Lamon, 2014. "Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0024583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.