IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0023895.html
   My bibliography  Save this article

Modeling Two-Oscillator Circadian Systems Entrained by Two Environmental Cycles

Author

Listed:
  • Gisele A Oda
  • W Otto Friesen

Abstract

Several experimental studies have altered the phase relationship between photic and non-photic environmental, 24 h cycles (zeitgebers) in order to assess their role in the synchronization of circadian rhythms. To assist in the interpretation of the complex activity patterns that emerge from these “conflicting zeitgeber” protocols, we present computer simulations of coupled circadian oscillators forced by two independent zeitgebers. This circadian system configuration was first employed by Pittendrigh and Bruce (1959), to model their studies of the light and temperature entrainment of the eclosion oscillator in Drosophila. Whereas most of the recent experiments have restricted conflicting zeitgeber experiments to two experimental conditions, by comparing circadian oscillator phases under two distinct phase relationships between zeitgebers (usually 0 and 12 h), Pittendrigh and Bruce compared eclosion phase under 12 distinct phase relationships, spanning the 24 h interval. Our simulations using non-linear differential equations replicated complex non-linear phenomena, such as “phase jumps” and sudden switches in zeitgeber preferences, which had previously been difficult to interpret. Our simulations reveal that these phenomena generally arise when inter-oscillator coupling is high in relation to the zeitgeber strength. Manipulations in the structural symmetry of the model indicated that these results can be expected to apply to a wide range of system configurations. Finally, our studies recommend the use of the complete protocol employed by Pittendrigh and Bruce, because different system configurations can generate similar results when a “conflicting zeitgeber experiment” incorporates only two phase relationships between zeitgebers.

Suggested Citation

  • Gisele A Oda & W Otto Friesen, 2011. "Modeling Two-Oscillator Circadian Systems Entrained by Two Environmental Cycles," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0023895
    DOI: 10.1371/journal.pone.0023895
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023895
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0023895&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0023895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henson, Michael A., 2013. "Multicellular models of intercellular synchronization in circadian neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 48-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0023895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.