IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0011828.html
   My bibliography  Save this article

Exposure to GSM RF Fields Does Not Affect Calcium Homeostasis in Human Endothelial Cells, Rat Pheocromocytoma Cells or Rat Hippocampal Neurons

Author

Listed:
  • Rodney P O'Connor
  • Steve D Madison
  • Philippe Leveque
  • H Llewelyn Roderick
  • Martin D Bootman

Abstract

In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an “electromagnetic smog”, with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012–2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field exposure on Ca2+ signals. Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure.

Suggested Citation

  • Rodney P O'Connor & Steve D Madison & Philippe Leveque & H Llewelyn Roderick & Martin D Bootman, 2010. "Exposure to GSM RF Fields Does Not Affect Calcium Homeostasis in Human Endothelial Cells, Rat Pheocromocytoma Cells or Rat Hippocampal Neurons," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0011828
    DOI: 10.1371/journal.pone.0011828
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011828
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0011828&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0011828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.