IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0002299.html
   My bibliography  Save this article

Visiting Sick People: Is It Really Detrimental to Our Health?

Author

Listed:
  • David Fouchet
  • John O'Brien
  • Dominique Pontier

Abstract

Intuitively, keeping ones distance from a source of infection would appear to be the best way to limit the occurrence of disease. However, this overlooks the importance of repeated infections in maintaining efficient immune defenses. When acquired immunity has partly waned, re-exposure to the pathogenic agent may lead to mild disease that boosts the immune system. This prevents the total loss of immunity that would lead to classical disease in cases of re-infection. Here, using a mathematical model, we show that avoiding the pathogenic agent is detrimental in some situations, e.g. for pathogens that are highly transmissible, are not excessively lethal and that induce rapidly waning immunity. Reducing exposure to pathogenic agents is among the objectives of most, if not all, public health measures. A better understanding of the factors influencing the severity of a disease is required before applying measures that reduce the circulation of pathogenic agents.

Suggested Citation

  • David Fouchet & John O'Brien & Dominique Pontier, 2008. "Visiting Sick People: Is It Really Detrimental to Our Health?," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-8, June.
  • Handle: RePEc:plo:pone00:0002299
    DOI: 10.1371/journal.pone.0002299
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002299
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002299&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0002299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Alison P. Galvani & Robin M. Bush, 2003. "Ecological and immunological determinants of influenza evolution," Nature, Nature, vol. 422(6930), pages 428-433, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    2. Ayako Suzuki & Kenji Mizumoto & Andrei R. Akhmetzhanov & Hiroshi Nishiura, 2019. "Interaction Among Influenza Viruses A/H1N1, A/H3N2, and B in Japan," IJERPH, MDPI, vol. 16(21), pages 1-10, October.
    3. Pedro, S.A. & Rwezaura, H. & Mandipezar, A. & Tchuenche, J.M., 2021. "Qualitative Analysis of an influenza model with biomedical interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Kucharski, Adam J. & Gog, Julia R., 2012. "Age profile of immunity to influenza: Effect of original antigenic sin," Theoretical Population Biology, Elsevier, vol. 81(2), pages 102-112.
    5. Adam J Kucharski & Justin Lessler & Derek A T Cummings & Steven Riley, 2018. "Timescales of influenza A/H3N2 antibody dynamics," PLOS Biology, Public Library of Science, vol. 16(8), pages 1-19, August.
    6. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    7. Chen, C.Y. & Ward, J.P. & Xie, W.B., 2019. "Modelling the outbreak of infectious disease following mutation from a non-transmissible strain," Theoretical Population Biology, Elsevier, vol. 126(C), pages 1-18.
    8. Bethany L Dearlove & Simon D W Frost, 2015. "Measuring Asymmetry in Time-Stamped Phylogenies," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-16, July.
    9. Maliyoni, Milliward & Chirove, Faraimunashe & Gaff, Holly D. & Govinder, Keshlan S., 2019. "A stochastic epidemic model for the dynamics of two pathogens in a single tick population," Theoretical Population Biology, Elsevier, vol. 127(C), pages 75-90.
    10. Levy, Nir & Iv, Michael & Yom-Tov, Elad, 2018. "Modeling influenza-like illnesses through composite compartmental models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 288-293.
    11. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer, 2018. "Optimal Design of the Seasonal Influenza Vaccine with Manufacturing Autonomy," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 371-387, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0002299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.