IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0001667.html
   My bibliography  Save this article

Non-Uniform Survival Rate of Heterodimerization Links in the Evolution of the Yeast Protein-Protein Interaction Network

Author

Listed:
  • Takeshi Hase
  • Yoshihito Niimura
  • Tsuguchika Kaminuma
  • Hiroshi Tanaka

Abstract

Protein-protein interaction networks (PINs) are scale-free networks with a small-world property. In a small-world network, the average cluster coefficient ( ) is much higher than in a random network, but the average shortest path length ( ) is similar between the two networks. To understand the evolutionary mechanisms shaping the structure of PINs, simulation studies using various network growth models have been performed. It has been reported that the heterodimerization (HD) model, in which a new link is added between duplicated nodes with a uniform probability, could reproduce scale-freeness and a high . In this paper, however, we show that the HD model is unsatisfactory, because (i) to reproduce the high in the yeast PIN, a much larger number (nHI) of HD links (links between duplicated nodes) are required than the estimated number of nHI in the yeast PIN and (ii) the spatial distribution of triangles in the yeast PIN is highly skewed but the HD model cannot reproduce the skewed distribution. To resolve these discrepancies, we here propose a new model named the non-uniform heterodimerization (NHD) model. In this model, an HD link is preferentially attached between duplicated nodes when they share many common neighbors. Simulation studies demonstrated that the NHD model can successfully reproduce the high , the low nHI, and the skewed distribution of triangles in the yeast PIN. These results suggest that the survival rate of HD links is not uniform in the evolution of PINs, and that an HD link between high-degree nodes tends to be evolutionarily conservative. The non-uniform survival rate of HD links can be explained by assuming a low mutation rate for a high-degree node, and thus this model appears to be biologically plausible.

Suggested Citation

  • Takeshi Hase & Yoshihito Niimura & Tsuguchika Kaminuma & Hiroshi Tanaka, 2008. "Non-Uniform Survival Rate of Heterodimerization Links in the Evolution of the Yeast Protein-Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-7, February.
  • Handle: RePEc:plo:pone00:0001667
    DOI: 10.1371/journal.pone.0001667
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001667
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0001667&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0001667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0001667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.