IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008720.html
   My bibliography  Save this article

Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses

Author

Listed:
  • Chris Wallace

Abstract

Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis.Author summary: Determining whether two traits share a genetic cause can be helpful to identify mechanisms underlying genetically-influenced risk of disease or other traits. One method for doing this is “coloc”, which updates prior knowledge about the chance of two traits sharing a causal variant with observed genetic association data in a Bayesian statistical framework. To do this using only summary genetic association data that is commonly shared, the method makes certain assumptions, in particular about the number of genetic causal variants that may underlie each measured trait in a genomic region. We walk through several data-driven approaches to summarise the prior knowledge required for this technique, and propose sensitivity analysis as a means of checking that inference is robust to uncertainty about that prior knowledge. We also show how the assumptions about number of causal variants in a region may be relaxed, and that this improves inferential accuracy.

Suggested Citation

  • Chris Wallace, 2020. "Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses," PLOS Genetics, Public Library of Science, vol. 16(4), pages 1-20, April.
  • Handle: RePEc:plo:pgen00:1008720
    DOI: 10.1371/journal.pgen.1008720
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008720
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008720&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.