IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008488.html
   My bibliography  Save this article

An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior

Author

Listed:
  • Tyler Buddell
  • Vladislav Friedman
  • Cody J Drozd
  • Christopher C Quinn

Abstract

Common and rare variants of the CACNA1C voltage-gated calcium channel gene have been associated with autism and other neurodevelopmental disorders including schizophrenia, bipolar disorder and ADHD. However, little is known about how CACNA1C variants affect cellular processes to alter neurodevelopment. The Timothy syndrome mutation is a rare de novo gain-of-function variant in CACNA1C that causes autism with high penetrance, providing a powerful avenue into investigating the role of CACNA1C variants in neurodevelopmental disorders. Here, we use egl-19, the C. elegans homolog of CACNA1C, to investigate the role of voltage-gated calcium channels in autism. We show that an egl-19(gof) mutation that is equivalent to the Timothy syndrome mutation can alter axon targeting and affect behavior in C. elegans. We find that wildtype egl-19 negatively regulates axon termination. The egl-19(gof) mutation represses axon termination to cause axon targeting defects that lead to the misplacement of electrical synapses and alterations in habituation to light touch. Moreover, genetic interactions indicate that the egl-19(gof) mutation functions with genes that promote selective autophagy to cause defects in axon termination and behavior. These results reveal a novel genetic mechanism whereby a de novo mutation in CACNA1C can drive alterations in circuit formation and behavior.Author summary: Autism is a disorder that affects neuronal development, leading to alterations in cognition and behavior. Imaging studies have revealed alterations in axonal connectivity as a key feature of autism. However, the underlying perturbations in cell biology that drive these alterations remain largely unknown. To address this issue, we have taken advantage of the Timothy syndrome mutation, a variant in a voltage-gated calcium channel that has the unusual property of causing autism with high penetrance. We identify a role for wild-type voltage-gated calcium channels in regulating axon targeting in C. elegans. Moreover, we find that two different versions of the Timothy syndrome mutation disrupt axon targeting. Our results suggest that the Timothy syndrome mutations disrupt axon targeting and behavior by interacting with genes that promote selective autophagy, the process through which cellular components are selected for degradation. These results reveal a mechanism through which variants in voltage-gated calcium channels can cause the disruptions in axonal connectivity that underlie autism.

Suggested Citation

  • Tyler Buddell & Vladislav Friedman & Cody J Drozd & Christopher C Quinn, 2019. "An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior," PLOS Genetics, Public Library of Science, vol. 15(12), pages 1-20, December.
  • Handle: RePEc:plo:pgen00:1008488
    DOI: 10.1371/journal.pgen.1008488
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008488
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008488&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.