IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1007450.html
   My bibliography  Save this article

Mutation load dynamics during environmentally-driven range shifts

Author

Listed:
  • Kimberly J Gilbert
  • Stephan Peischl
  • Laurent Excoffier

Abstract

The fitness of spatially expanding species has been shown to decrease over time and space, but specialist species tracking their changing environment and shifting their range accordingly have been little studied. We use individual-based simulations and analytical modeling to compare the impact of range expansions and range shifts on genetic diversity and fitness loss, as well as the ability to recover fitness after either a shift or expansion. We find that the speed of a shift has a strong impact on fitness evolution. Fastest shifts show the strongest fitness loss per generation, but intermediate shift speeds lead to the strongest fitness loss per geographic distance. Range shifting species lose fitness more slowly through time than expanding species, however, their fitness measured at equal geographic distances from the source of expansion can be considerably lower. These counter-intuitive results arise from the combination of time over which selection acts and mutations enter the system. Range shifts also exhibit reduced fitness recovery after a geographic shift and may result in extinction, whereas range expansions can persist from the core of the species range. The complexity of range expansions and range shifts highlights the potential for severe consequences of environmental change on species survival.Author summary: As environments change through time across the globe, species must adapt or relocate to survive. Specialized species must track the specific moving environments to which they are adapted, as compared to generalists which can spread widely. During colonization of new habitat, individuals can accumulate deleterious alleles through repeated bottlenecks. We show through simulation and analytic modeling that the process by which these alleles accumulate changes depending upon the speed at which populations spread over a landscape. This is due to the increased efficacy of selection against deleterious variants at slow speeds of range shifts and decreased input of mutations at faster speeds of range shifts. Under some selective circumstances, shifting of a species range leads to extinction of the entire population. This suggests that the rate of environmental change across the globe will play a large role in the survival of specialist species as compared to more generalist species.

Suggested Citation

  • Kimberly J Gilbert & Stephan Peischl & Laurent Excoffier, 2018. "Mutation load dynamics during environmentally-driven range shifts," PLOS Genetics, Public Library of Science, vol. 14(9), pages 1-18, September.
  • Handle: RePEc:plo:pgen00:1007450
    DOI: 10.1371/journal.pgen.1007450
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007450
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1007450&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1007450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1007450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.