IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010032.html
   My bibliography  Save this article

RNA folding using quantum computers

Author

Listed:
  • Dillion M Fox
  • Christopher M MacDermaid
  • Andrea M A Schreij
  • Magdalena Zwierzyna
  • Ross C Walker

Abstract

The 3-dimensional fold of an RNA molecule is largely determined by patterns of intramolecular hydrogen bonds between bases. Predicting the base pairing network from the sequence, also referred to as RNA secondary structure prediction or RNA folding, is a nondeterministic polynomial-time (NP)-complete computational problem. The structure of the molecule is strongly predictive of its functions and biochemical properties, and therefore the ability to accurately predict the structure is a crucial tool for biochemists. Many methods have been proposed to efficiently sample possible secondary structure patterns. Classic approaches employ dynamic programming, and recent studies have explored approaches inspired by evolutionary and machine learning algorithms. This work demonstrates leveraging quantum computing hardware to predict the secondary structure of RNA. A Hamiltonian written in the form of a Binary Quadratic Model (BQM) is derived to drive the system toward maximizing the number of consecutive base pairs while jointly maximizing the average length of the stems. A Quantum Annealer (QA) is compared to a Replica Exchange Monte Carlo (REMC) algorithm programmed with the same objective function, with the QA being shown to be highly competitive at rapidly identifying low energy solutions. The method proposed in this study was compared to three algorithms from literature and, despite its simplicity, was found to be competitive on a test set containing known structures with pseudoknots.Author summary: The recent FDA approval of mRNA-based vaccines has increased public interest in synthetically designed RNA molecules. RNA molecules fold into complex secondary structures which determine their molecular properties and in part their efficacy. Determining the folded structure of an RNA molecule is a computationally challenging task with exponential scaling that is intractable to solve exactly, and therefore approximate methods are used. Quantum computing technology offers a new approach to finding approximate solutions to problems with exponential scaling. We formulate a simplistic, yet effective, model of RNA folding that can easily be mapped to quantum computers and we show that currently available quantum computing hardware is competitive with classical methods.

Suggested Citation

  • Dillion M Fox & Christopher M MacDermaid & Andrea M A Schreij & Magdalena Zwierzyna & Ross C Walker, 2022. "RNA folding using quantum computers," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-17, April.
  • Handle: RePEc:plo:pcbi00:1010032
    DOI: 10.1371/journal.pcbi.1010032
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010032
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010032&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.