IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009999.html
   My bibliography  Save this article

Validation-based model selection for 13C metabolic flux analysis with uncertain measurement errors

Author

Listed:
  • Nicolas Sundqvist
  • Nina Grankvist
  • Jeramie Watrous
  • Jain Mohit
  • Roland Nilsson
  • Gunnar Cedersund

Abstract

Accurate measurements of metabolic fluxes in living cells are central to metabolism research and metabolic engineering. The gold standard method is model-based metabolic flux analysis (MFA), where fluxes are estimated indirectly from mass isotopomer data with the use of a mathematical model of the metabolic network. A critical step in MFA is model selection: choosing what compartments, metabolites, and reactions to include in the metabolic network model. Model selection is often done informally during the modelling process, based on the same data that is used for model fitting (estimation data). This can lead to either overly complex models (overfitting) or too simple ones (underfitting), in both cases resulting in poor flux estimates. Here, we propose a method for model selection based on independent validation data. We demonstrate in simulation studies that this method consistently chooses the correct model in a way that is independent on errors in measurement uncertainty. This independence is beneficial, since estimating the true magnitude of these errors can be difficult. In contrast, commonly used model selection methods based on the χ2-test choose different model structures depending on the believed measurement uncertainty; this can lead to errors in flux estimates, especially when the magnitude of the error is substantially off. We present a new approach for quantification of prediction uncertainty of mass isotopomer distributions in other labelling experiments, to check for problems with too much or too little novelty in the validation data. Finally, in an isotope tracing study on human mammary epithelial cells, the validation-based model selection method identified pyruvate carboxylase as a key model component. Our results argue that validation-based model selection should be an integral part of MFA model development.Author summary: Measuring metabolic reaction fluxes in living cells is difficult, yet important. The gold standard is to label extracellular metabolites with 13C, to use mass spectrometry to find out where the 13C-atoms ends up, and finally use mathematical modelling to calculate how quickly each reaction must have flowed, for the 13C-atoms to end up like that. This measurement thus relies on usage of the right mathematical model, which must be selected among various candidate models. In this manuscript, we present a new way to do this model selection step, utilizing validation data. Using an adopted approach to calculate the uncertainty of model predictions, we identify new validation experiments, which are neither too similar, nor too dissimilar, compared to the previous training data. The model candidate that is best at predicting this new validation data is the one chosen. Tests on simulated data where the true model is known, shows that the validation-based method is robust when the magnitude of the error in the measurement uncertainty is unknown, something that conventional methods are not. This improvement is important since true uncertainties can be difficult to estimate for these data. Finally, we demonstrate how the new method can be used on real data, to identify fluxes and important reactions.

Suggested Citation

  • Nicolas Sundqvist & Nina Grankvist & Jeramie Watrous & Jain Mohit & Roland Nilsson & Gunnar Cedersund, 2022. "Validation-based model selection for 13C metabolic flux analysis with uncertain measurement errors," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-27, April.
  • Handle: RePEc:plo:pcbi00:1009999
    DOI: 10.1371/journal.pcbi.1009999
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009999
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009999&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.