IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009838.html
   My bibliography  Save this article

Evaluating supervised and unsupervised background noise correction in human gut microbiome data

Author

Listed:
  • Leah Briscoe
  • Brunilda Balliu
  • Sriram Sankararaman
  • Eran Halperin
  • Nandita R Garud

Abstract

The ability to predict human phenotypes and identify biomarkers of disease from metagenomic data is crucial for the development of therapeutics for microbiome-associated diseases. However, metagenomic data is commonly affected by technical variables unrelated to the phenotype of interest, such as sequencing protocol, which can make it difficult to predict phenotype and find biomarkers of disease. Supervised methods to correct for background noise, originally designed for gene expression and RNA-seq data, are commonly applied to microbiome data but may be limited because they cannot account for unmeasured sources of variation. Unsupervised approaches address this issue, but current methods are limited because they are ill-equipped to deal with the unique aspects of microbiome data, which is compositional, highly skewed, and sparse. We perform a comparative analysis of the ability of different denoising transformations in combination with supervised correction methods as well as an unsupervised principal component correction approach that is presently used in other domains but has not been applied to microbiome data to date. We find that the unsupervised principal component correction approach has comparable ability in reducing false discovery of biomarkers as the supervised approaches, with the added benefit of not needing to know the sources of variation apriori. However, in prediction tasks, it appears to only improve prediction when technical variables contribute to the majority of variance in the data. As new and larger metagenomic datasets become increasingly available, background noise correction will become essential for generating reproducible microbiome analyses.Author summary: The human gut microbiome is known to play a major role in health and is associated with many diseases including colorectal cancer, obesity, and diabetes. The prediction of host phenotypes and identification of biomarkers of disease is essential for harnessing the therapeutic potential of the microbiome. However, many metagenomic datasets are affected by technical variables that introduce unwanted variation that can confound the ability to predict phenotypes and identify biomarkers. Currently, supervised methods originally designed for gene expression and RNA-seq data are commonly applied to microbiome data for correction of background noise, but they are limited in that they cannot correct for unmeasured sources of variation. Unsupervised approaches address this issue, but current methods are limited because they are ill-equipped to deal with the unique aspects of microbiome data, which is compositional, highly skewed, and sparse. We perform a comparative analysis of the ability of different denoising transformations in combination with supervised correction methods as well as an unsupervised principal component correction approach and find that all correction approaches reduce false positives for biomarker discovery. In the task of predicting phenotypes, different approaches have varying success where the unsupervised correction can improve prediction when technical variables contribute to the majority of variance in the data. As new and larger metagenomic datasets become increasingly available, background noise correction will become essential for generating reproducible microbiome analyses.

Suggested Citation

  • Leah Briscoe & Brunilda Balliu & Sriram Sankararaman & Eran Halperin & Nandita R Garud, 2022. "Evaluating supervised and unsupervised background noise correction in human gut microbiome data," PLOS Computational Biology, Public Library of Science, vol. 18(2), pages 1-25, February.
  • Handle: RePEc:plo:pcbi00:1009838
    DOI: 10.1371/journal.pcbi.1009838
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009838
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009838&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.