IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009731.html
   My bibliography  Save this article

OperonSEQer: A set of machine-learning algorithms with threshold voting for detection of operon pairs using short-read RNA-sequencing data

Author

Listed:
  • Raga Krishnakumar
  • Anne M Ruffing

Abstract

Operon prediction in prokaryotes is critical not only for understanding the regulation of endogenous gene expression, but also for exogenous targeting of genes using newly developed tools such as CRISPR-based gene modulation. A number of methods have used transcriptomics data to predict operons, based on the premise that contiguous genes in an operon will be expressed at similar levels. While promising results have been observed using these methods, most of them do not address uncertainty caused by technical variability between experiments, which is especially relevant when the amount of data available is small. In addition, many existing methods do not provide the flexibility to determine the stringency with which genes should be evaluated for being in an operon pair. We present OperonSEQer, a set of machine learning algorithms that uses the statistic and p-value from a non-parametric analysis of variance test (Kruskal-Wallis) to determine the likelihood that two adjacent genes are expressed from the same RNA molecule. We implement a voting system to allow users to choose the stringency of operon calls depending on whether your priority is high recall or high specificity. In addition, we provide the code so that users can retrain the algorithm and re-establish hyperparameters based on any data they choose, allowing for this method to be expanded as additional data is generated. We show that our approach detects operon pairs that are missed by current methods by comparing our predictions to publicly available long-read sequencing data. OperonSEQer therefore improves on existing methods in terms of accuracy, flexibility, and adaptability.Author summary: Bacteria and archaea, single-cell organisms collectively known as prokaryotes, live in all imaginable environments and comprise the majority of living organisms on this planet. Prokaryotes play a critical role in the homeostasis of multicellular organisms (such as animals and plants) and ecosystems. In addition, bacteria can be pathogenic and cause a variety of diseases in these same hosts and ecosystems. In short, understanding the biology and molecular functions of bacteria and archaea and devising mechanisms to engineer and optimize their properties are critical scientific endeavors with significant implications in healthcare, agriculture, manufacturing, and climate science among others. One major molecular difference between unicellular and multicellular organisms is the way they express genes–multicellular organisms make individual RNA molecules for each gene while, prokaryotes express operons (i.e., a group of genes coding functionally related proteins) in contiguous polycistronic RNA molecules. Understanding which genes exist within operons is critical for elucidating basic biology and for engineering organisms. In this work, we use a combination of statistical and machine learning-based methods to use next-generation sequencing data to predict operon structure across a range of prokaryotes. Our method provides an easily implemented, robust, accurate, and flexible way to determine operon structure in an organism-agnostic manner using readily available data.

Suggested Citation

  • Raga Krishnakumar & Anne M Ruffing, 2022. "OperonSEQer: A set of machine-learning algorithms with threshold voting for detection of operon pairs using short-read RNA-sequencing data," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-18, January.
  • Handle: RePEc:plo:pcbi00:1009731
    DOI: 10.1371/journal.pcbi.1009731
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009731
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009731&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.