IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009659.html
   My bibliography  Save this article

Efficient ReML inference in variance component mixed models using a Min-Max algorithm

Author

Listed:
  • Fabien Laporte
  • Alain Charcosset
  • Tristan Mary-Huard

Abstract

Since their introduction in the 50’s, variance component mixed models have been widely used in many application fields. In this context, ReML estimation is by far the most popular procedure to infer the variance components of the model. Although many implementations of the ReML procedure are readily available, there is still need for computational improvements due to the ever-increasing size of the datasets to be handled, and to the complexity of the models to be adjusted. In this paper, we present a Min-Max (MM) algorithm for ReML inference and combine it with several speed-up procedures. The ReML MM algorithm we present is compared to 5 state-of-the-art publicly available algorithms used in statistical genetics. The computational performance of the different algorithms are evaluated on several datasets representing different plant breeding experimental designs. The MM algorithm ranks among the top 2 methods in almost all settings and is more versatile than many of its competitors. The MM algorithm is a promising alternative to the classical AI-ReML algorithm in the context of variance component mixed models. It is available in the MM4LMM R-package.Author summary: Mixed models have been a cornerstone of the quantitative genetics methodology for decades. Due to the growing size of datasets, their associated computational cost is a major burden, particularly in genome-wide association studies that routinely address Millions of markers, requiring as many mixed models to be fitted. In the particular case of a 2-variance component mixed models efficient procedures such as FaST-LMM or GEMMA have been developed to analyze panels with tens of thousands of individuals. However, there is room for improvement in cases where the computational burden is due to the number of variance components in the model rather than the panel size, a classical situation in plant genetics where several variance components are required to handle various polygenic effects. We consider a “MM” (Min-Max) algorithm as an alternative to the by-default AI (Average Information) algorithm used to perform inference in mixed models. The MM algorithm can be combined to the classical tricks used to accelerate the inference process (e.g. simultaneous orthogonalization or squared iterative acceleration methods). The MM procedure is implemented in an MM4LMM package, and is competitive compared to classical algorithms used in plant genetics. This package should help geneticists handling more complex models to analyze their data than today.

Suggested Citation

  • Fabien Laporte & Alain Charcosset & Tristan Mary-Huard, 2022. "Efficient ReML inference in variance component mixed models using a Min-Max algorithm," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-19, January.
  • Handle: RePEc:plo:pcbi00:1009659
    DOI: 10.1371/journal.pcbi.1009659
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009659
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009659&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.