IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009355.html
   My bibliography  Save this article

Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model

Author

Listed:
  • Federica Gugole
  • Luc E Coffeng
  • Wouter Edeling
  • Benjamin Sanderse
  • Sake J de Vlas
  • Daan Crommelin

Abstract

Many countries are currently dealing with the COVID-19 epidemic and are searching for an exit strategy such that life in society can return to normal. To support this search, computational models are used to predict the spread of the virus and to assess the efficacy of policy measures before actual implementation. The model output has to be interpreted carefully though, as computational models are subject to uncertainties. These can stem from, e.g., limited knowledge about input parameters values or from the intrinsic stochastic nature of some computational models. They lead to uncertainties in the model predictions, raising the question what distribution of values the model produces for key indicators of the severity of the epidemic. Here we show how to tackle this question using techniques for uncertainty quantification and sensitivity analysis. We assess the uncertainties and sensitivities of four exit strategies implemented in an agent-based transmission model with geographical stratification. The exit strategies are termed Flattening the Curve, Contact Tracing, Intermittent Lockdown and Phased Opening. We consider two key indicators of the ability of exit strategies to avoid catastrophic health care overload: the maximum number of prevalent cases in intensive care (IC), and the total number of IC patient-days in excess of IC bed capacity. Our results show that uncertainties not directly related to the exit strategies are secondary, although they should still be considered in comprehensive analysis intended to inform policy makers. The sensitivity analysis discloses the crucial role of the intervention uptake by the population and of the capability to trace infected individuals. Finally, we explore the existence of a safe operating space. For Intermittent Lockdown we find only a small region in the model parameter space where the key indicators of the model stay within safe bounds, whereas this region is larger for the other exit strategies.Author summary: Many countries are currently dealing with the COVID-19 epidemic and are looking for an exit strategy such that life in society can return to normal. For that purpose computational models are used to predict the spread of the virus and to assess the efficacy of policy measures before putting them into practice. These models are subject to uncertainties (due to, for instance, limited knowledge of the parameter values), which can lead to a large variability in model predictions. It is therefore fundamental to assess which range of values a model produces for key indicators of the severity of the epidemic. We present here the results of the uncertainty and sensitivity analysis of four exit strategies simulated with an individual-based model of the COVID-19 transmission. As key indicators of the severity of the pandemic we consider the maximum number of cases in intensive care and the total number of intensive care patient-days in excess. Our results show the crucial role of the intervention uptake by the population, of the reduction in the level of transmission by intervention and of the capability to trace infected individuals.

Suggested Citation

  • Federica Gugole & Luc E Coffeng & Wouter Edeling & Benjamin Sanderse & Sake J de Vlas & Daan Crommelin, 2021. "Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-24, September.
  • Handle: RePEc:plo:pcbi00:1009355
    DOI: 10.1371/journal.pcbi.1009355
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009355
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009355&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Xujia & Sudret, Bruno, 2021. "Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Mello-Sampayo, F.;, 2024. "Uncertainty in Healthcare Policy Decisions: An Epidemiological Real Options Approach to COVID-19 Lockdown Exits," Health, Econometrics and Data Group (HEDG) Working Papers 24/01, HEDG, c/o Department of Economics, University of York.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Feng, Liuyang & Zhang, Limao, 2022. "Enhanced prediction intervals of tunnel-induced settlement using the genetic algorithm and neural network," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Blagojević, Nikola & Didier, Max & Stojadinović, Božidar, 2022. "Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Vuillod, Bruno & Montemurro, Marco & Panettieri, Enrico & Hallo, Ludovic, 2023. "A comparison between Sobol’s indices and Shapley’s effect for global sensitivity analysis of systems with independent input variables," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Barr, John & Rabitz, Herschel, 2023. "Kernel-based global sensitivity analysis obtained from a single data set," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.