IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009153.html
   My bibliography  Save this article

Formation, collective motion, and merging of macroscopic bacterial aggregates

Author

Listed:
  • George Courcoubetis
  • Manasi S Gangan
  • Sean Lim
  • Xiaokan Guo
  • Stephan Haas
  • James Q Boedicker

Abstract

Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and metabolic activity of billions of cells. A recent study on pattern formation in wild bacterial isolates has revealed unique collective behaviors of the bacteria Enterobacter cloacae. As in other bacterial species, Enterobacter cloacae form macroscopic aggregates. Once formed, these bacterial clusters can migrate several millimeters, sometimes resulting in the merging of two or more clusters. To better understand these phenomena, we examine the formation and dynamics of thousands of bacterial clusters that form within a 22 cm square culture dish filled with soft agar over two days. At the macroscale, the aggregates display spatial order at short length scales, and the migration of cell clusters is superdiffusive, with a merging acceleration that is correlated with aggregate size. At the microscale, aggregates are composed of immotile cells surrounded by low density regions of motile cells. The collective movement of the aggregates is the result of an asymmetric flux of bacteria at the boundary. An agent-based model is developed to examine how these phenomena are the result of both chemotactic movement and a change in motility at high cell density. These results identify and characterize a new mechanism for collective bacterial motility driven by a transient, density-dependent change in motility.Author summary: Bacteria growing and swimming in soft agar often aggregate to form elaborate spatial patterns. Here we examine the patterns formed by the bacteria Enterobacter cloacae. An unusual behavior of these bacteria is the collective movement of cells after the initial aggregation into a tiny spot. Despite the majority of the cells within an aggregate being immotile at any point in the time, the flux of cells entering and leaving the aggregate, as motility is lost and regained in individual cells, led to a net, collective movement of the aggregate. These spots sometimes run into each other and combine. By looking at the cells within these spots under a microscope, we find that cells within each spot stop swimming. The process of switching back and forth between swimming and not swimming causes the movement and fusion of the spots. A numerical simulation shows that the migration and merging of these spots can be expected if the cells swim towards regions of space with high concentrations of attractant molecules and stop swimming in locations crowded with many cells. This work identifies a novel process through which populations of bacteria cooperate and control the movement of large groups of cells.

Suggested Citation

  • George Courcoubetis & Manasi S Gangan & Sean Lim & Xiaokan Guo & Stephan Haas & James Q Boedicker, 2022. "Formation, collective motion, and merging of macroscopic bacterial aggregates," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-24, January.
  • Handle: RePEc:plo:pcbi00:1009153
    DOI: 10.1371/journal.pcbi.1009153
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009153
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009153&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean Lim & Xiaokan Guo & James Q Boedicker, 2019. "Connecting single-cell properties to collective behavior in multiple wild isolates of the Enterobacter cloacae complex," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009153. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.