IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009095.html
   My bibliography  Save this article

Identifying the combinatorial control of signal-dependent transcription factors

Author

Listed:
  • Ning Wang
  • Diane Lefaudeux
  • Anup Mazumder
  • Jingyi Jessica Li
  • Alexander Hoffmann

Abstract

The effectiveness of immune responses depends on the precision of stimulus-responsive gene expression programs. Cells specify which genes to express by activating stimulus-specific combinations of stimulus-induced transcription factors (TFs). Their activities are decoded by a gene regulatory strategy (GRS) associated with each response gene. Here, we examined whether the GRSs of target genes may be inferred from stimulus-response (input-output) datasets, which remains an unresolved model-identifiability challenge. We developed a mechanistic modeling framework and computational workflow to determine the identifiability of all possible combinations of synergistic (AND) or non-synergistic (OR) GRSs involving three transcription factors. Considering different sets of perturbations for stimulus-response studies, we found that two thirds of GRSs are easily distinguishable but that substantially more quantitative data is required to distinguish the remaining third. To enhance the accuracy of the inference with timecourse experimental data, we developed an advanced error model that avoids error overestimates by distinguishing between value and temporal error. Incorporating this error model into a Bayesian framework, we show that GRS models can be identified for individual genes by considering multiple datasets. Our analysis rationalizes the allocation of experimental resources by identifying most informative TF stimulation conditions. Applying this computational workflow to experimental data of immune response genes in macrophages, we found that a much greater fraction of genes are combinatorially controlled than previously reported by considering compensation among transcription factors. Specifically, we revealed that a group of known NFκB target genes may also be regulated by IRF3, which is supported by chromatin immuno-precipitation analysis. Our study provides a computational workflow for designing and interpreting stimulus-response gene expression studies to identify underlying gene regulatory strategies and further a mechanistic understanding.Author summary: Cells need to sense environmental cues and respond appropriately. One important notion is that different stimuli activate different combinations of transcription factors and that responsive genes are regulated by distinct subsets of these. However, identifying the regulatory strategies by which genes interpret transcription factor activities remains a largely unsolved challenge. In this work we address the question: to what extent are combinatorial transcription factor regulatory strategies identifiable from stimulus-response (input-output) datasets? We present a computational framework to determine the identifiability of gene regulatory strategies, and examine how reliable and quantitative model inference is a function of the quality and quantity of available data. We present an error model that more precisely quantifies uncertainty for perturbation-timecourse data sets by also considering error in the time domain, and achieves an improved performance in identifying and quantifying gene regulatory strategies. With these tools, we generate guidelines for experimental design that optimize limited resources for generating data for model inference. Finally, we apply the workflow to immune response datasets and uncover evidence that many more genes are subject to combinatorial control that previously thought; we offer physical transcription factor binding data to support this finding for one particular group of genes. This demonstrates that the computational workflow may guide studies of the regulatory strategies that govern stimulus-responsive gene expression programs.

Suggested Citation

  • Ning Wang & Diane Lefaudeux & Anup Mazumder & Jingyi Jessica Li & Alexander Hoffmann, 2021. "Identifying the combinatorial control of signal-dependent transcription factors," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-29, June.
  • Handle: RePEc:plo:pcbi00:1009095
    DOI: 10.1371/journal.pcbi.1009095
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009095
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009095&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diane Lefaudeux & Supriya Sen & Kevin Jiang & Alexander Hoffmann, 2022. "Kinetics of mRNA nuclear export regulate innate immune response gene expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Zare & Mostafa Kaveh & Arkady Khodursky, 2011. "Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-7, August.
    2. Diambra, L., 2011. "Coarse-grain reconstruction of genetic networks from expression levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2198-2207.
    3. Marco Grimaldi & Roberto Visintainer & Giuseppe Jurman, 2011. "RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-19, December.
    4. Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. repec:jss:jstsof:37:i01 is not listed on IDEAS
    6. Joeri Ruyssinck & Vân Anh Huynh-Thu & Pierre Geurts & Tom Dhaene & Piet Demeester & Yvan Saeys, 2014. "NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    7. Tom Wilderjans & Dirk Depril & Iven Van Mechelen, 2013. "Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 56-74, April.
    8. Shuhei Kimura & Masanao Sato & Mariko Okada-Hatakeyama, 2013. "Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    9. Xiaomeng Zhang & Bin Shao & Yangle Wu & Ouyang Qi, 2013. "A Reverse Engineering Approach to Optimize Experiments for the Construction of Biological Regulatory Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-9, September.
    10. Takanori Hasegawa & Rui Yamaguchi & Masao Nagasaki & Satoru Miyano & Seiya Imoto, 2014. "Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-19, August.
    11. Kannan Venkateshan & Tegner Jesper, 2016. "Adaptive input data transformation for improved network reconstruction with information theoretic algorithms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 507-520, December.
    12. Fei Liu & Shao-Wu Zhang & Wei-Feng Guo & Ze-Gang Wei & Luonan Chen, 2016. "Inference of Gene Regulatory Network Based on Local Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    13. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    14. Benafsh Husain & F Alex Feltus, 2019. "EdgeScaping: Mapping the spatial distribution of pairwise gene expression intensities," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    15. Zhen Yang & Yen‐Yi Ho, 2022. "Modeling dynamic correlation in zero‐inflated bivariate count data with applications to single‐cell RNA sequencing data," Biometrics, The International Biometric Society, vol. 78(2), pages 766-776, June.
    16. Mingyi Wang & Jerome Verdier & Vagner A Benedito & Yuhong Tang & Jeremy D Murray & Yinbing Ge & Jörg D Becker & Helena Carvalho & Christian Rogers & Michael Udvardi & Ji He, 2013. "LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    17. Scott Christley & Qing Nie & Xiaohui Xie, 2009. "Incorporating Existing Network Information into Gene Network Inference," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-13, August.
    18. Maghsoodi, Masoume, 2016. "A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods," MPRA Paper 79743, University Library of Munich, Germany.
    19. Ambroise Jérôme & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Transcriptional Network Inference from Functional Similarity and Expression Data: A Global Supervised Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-24, January.
    20. Shiori Sagawa & Morgan N Price & Adam M Deutschbauer & Adam P Arkin, 2017. "Validating regulatory predictions from diverse bacteria with mutant fitness data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    21. Guibo Ye & Mengfan Tang & Jian-Feng Cai & Qing Nie & Xiaohui Xie, 2013. "Low-Rank Regularization for Learning Gene Expression Programs," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.