IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008885.html
   My bibliography  Save this article

DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data

Author

Listed:
  • Lijun Cheng
  • Pratik Karkhanis
  • Birkan Gokbag
  • Yueze Liu
  • Lang Li

Abstract

Single-cell mass cytometry, also known as cytometry by time of flight (CyTOF) is a powerful high-throughput technology that allows analysis of up to 50 protein markers per cell for the quantification and classification of single cells. Traditional manual gating utilized to identify new cell populations has been inadequate, inefficient, unreliable, and difficult to use, and no algorithms to identify both calibration and new cell populations has been well established. A deep learning with graphic cluster (DGCyTOF) visualization is developed as a new integrated embedding visualization approach in identifying canonical and new cell types. The DGCyTOF combines deep-learning classification and hierarchical stable-clustering methods to sequentially build a tri-layer construct for known cell types and the identification of new cell types. First, deep classification learning is constructed to distinguish calibration cell populations from all cells by softmax classification assignment under a probability threshold, and graph embedding clustering is then used to identify new cell populations sequentially. In the middle of two-layer, cell labels are automatically adjusted between new and unknown cell populations via a feedback loop using an iteration calibration system to reduce the rate of error in the identification of cell types, and a 3-dimensional (3D) visualization platform is finally developed to display the cell clusters with all cell-population types annotated. Utilizing two benchmark CyTOF databases comprising up to 43 million cells, we compared accuracy and speed in the identification of cell types among DGCyTOF, DeepCyTOF, and other technologies including dimension reduction with clustering, including Principal Component Analysis (PCA), Factor Analysis (FA), Independent Component Analysis (ICA), Isometric Feature Mapping (Isomap), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP) with k-means clustering and Gaussian mixture clustering. We observed the DGCyTOF represents a robust complete learning system with high accuracy, speed and visualization by eight measurement criteria. The DGCyTOF displayed F-scores of 0.9921 for CyTOF1 and 0.9992 for CyTOF2 datasets, whereas those scores were only 0.507 and 0.529 for the t-SNE+k-means; 0.565 and 0.59, for UMAP+ k-means. Comparison of DGCyTOF with t-SNE and UMAP visualization in accuracy demonstrated its approximately 35% superiority in predicting cell types. In addition, observation of cell-population distribution was more intuitive in the 3D visualization in DGCyTOF than t-SNE and UMAP visualization. The DGCyTOF model can automatically assign known labels to single cells with high accuracy using deep-learning classification assembling with traditional graph-clustering and dimension-reduction strategies. Guided by a calibration system, the model seeks optimal accuracy balance among calibration cell populations and unknown cell types, yielding a complete and robust learning system that is highly accurate in the identification of cell populations compared to results using other methods in the analysis of single-cell CyTOF data. Application of the DGCyTOF method to identify cell populations could be extended to the analysis of single-cell RNASeq data and other omics data.Author summary: Single-cell mass cytometry, also known as cytometry by time of flight is a powerful high-throughput technology that allows analysis of up to 50 protein markers per cell for the quantification and classification of single cells. Traditional manual gating utilized to identify new cell populations has been inadequate, inefficient, unreliable, and difficult to use. A deep learning with graphic cluster (DGCyTOF) visualization is developed in identifying canonical and new cell types. Utilizing two benchmark CyTOF databases comprising up to 43 million cells, we compared accuracy and speed in the identification of cell types among DGCyTOF, DeepCyTOF, and other technologies including dimension reduction with clustering, including Principal Component Analysis, Factor Analysis, Independent Component Analysis, Isometric Feature Mapping, t-distributed Stochastic Neighbor Embedding, and Uniform Manifold Approximation and Projection with k-means clustering and Gaussian mixture clustering. We observed that DGCyTOF outperformed all the other methods in accuracy, speed and visualization. The application of the DGCyTOF method to identify cell populations could be extended to the analysis of single-cell RNASeq data and other omics data.

Suggested Citation

  • Lijun Cheng & Pratik Karkhanis & Birkan Gokbag & Yueze Liu & Lang Li, 2022. "DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-22, April.
  • Handle: RePEc:plo:pcbi00:1008885
    DOI: 10.1371/journal.pcbi.1008885
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008885
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008885&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dmitry Kobak & Philipp Berens, 2019. "The art of using t-SNE for single-cell transcriptomics," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Vincent Unen & Thomas Höllt & Nicola Pezzotti & Na Li & Marcel J. T. Reinders & Elmar Eisemann & Frits Koning & Anna Vilanova & Boudewijn P. F. Lelieveldt, 2017. "Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    2. Juan Du & Junlei Zhang & Lin Wang & Xun Wang & Yaxing Zhao & Jiaoying Lu & Tingmin Fan & Meng Niu & Jie Zhang & Fei Cheng & Jun Li & Qi Zhu & Daoqiang Zhang & Hao Pei & Guang Li & Xingguang Liang & He, 2023. "Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    4. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    5. Gurdip Bakshi & Xiaohui Gao & George Panayotov, 2021. "A Theory of Dissimilarity Between Stochastic Discount Factors," Management Science, INFORMS, vol. 67(7), pages 4602-4622, July.
    6. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    8. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    9. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    10. Moritz Nobis & Carlo Schmitt & Ralf Schemm & Armin Schnettler, 2020. "Pan-European CVaR-Constrained Stochastic Unit Commitment in Day-Ahead and Intraday Electricity Markets," Energies, MDPI, vol. 13(9), pages 1-35, May.
    11. Rong Ma & Eric D. Sun & James Zou, 2023. "A spectral method for assessing and combining multiple data visualizations," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    13. Leandro Nascimento, 2022. "Bounded arbitrage and nearly rational behavior," Papers 2212.02680, arXiv.org, revised Jul 2023.
    14. Kaiwen Wang & Yuqiu Yang & Fangjiang Wu & Bing Song & Xinlei Wang & Tao Wang, 2023. "Comparative analysis of dimension reduction methods for cytometry by time-of-flight data," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Giacomo Aletti & Caterina May & Piercesare Secchi, 2012. "A Functional Equation Whose Unknown is $\mathcal{P}([0,1])$ Valued," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1207-1232, December.
    16. Kavita Ramanan & Aaron Smith, 2018. "Bounds on Lifting Continuous-State Markov Chains to Speed Up Mixing," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1647-1678, September.
    17. Patrick Marsh, 2019. "The role of information in nonstationary regression," Discussion Papers 19/04, University of Nottingham, Granger Centre for Time Series Econometrics.
    18. Barrera, Javiera & Lachaud, Béatrice & Ycart, Bernard, 2006. "Cut-off for n-tuples of exponentially converging processes," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1433-1446, October.
    19. L. Mathur & B. Szalai & N. H. Du & R. Utharala & M. Ballinger & J. J. M. Landry & M. Ryckelynck & V. Benes & J. Saez-Rodriguez & C. A. Merten, 2022. "Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.