IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008617.html
   My bibliography  Save this article

Aggregative cycles evolve as a solution to conflicts in social investment

Author

Listed:
  • Leonardo Miele
  • Silvia De Monte

Abstract

Multicellular organization is particularly vulnerable to conflicts between different cell types when the body forms from initially isolated cells, as in aggregative multicellular microbes. Like other functions of the multicellular phase, coordinated collective movement can be undermined by conflicts between cells that spend energy in fuelling motion and ‘cheaters’ that get carried along. The evolutionary stability of collective behaviours against such conflicts is typically addressed in populations that undergo extrinsically imposed phases of aggregation and dispersal. Here, via a shift in perspective, we propose that aggregative multicellular cycles may have emerged as a way to temporally compartmentalize social conflicts. Through an eco-evolutionary mathematical model that accounts for individual and collective strategies of resource acquisition, we address regimes where different motility types coexist. Particularly interesting is the oscillatory regime that, similarly to life cycles of aggregative multicellular organisms, alternates on the timescale of several cell generations phases of prevalent solitary living and starvation-triggered aggregation. Crucially, such self-organized oscillations emerge as a result of evolution of cell traits associated to conflict escalation within multicellular aggregates.Author summary: In aggregative multicellular life cycles, cells come together in heterogenous aggregates, whose collective function benefits all the constituent cells. Current explanations for the evolutionary stability of such organization presume that alternating phases of aggregation and dispersal are already in place. Here we propose that, instead of being externally driven, the temporal arrangement of aggregative life cycles may emerge from the interplay between ecology and evolution in populations with differential motility. In our model, cell motility underpins group formation and allows cells to forage individually and collectively. Notably, slower cells can exploit the propulsion by faster cells within multicellular groups. When the level of such exploitation is let evolve, increasing social conflicts are associated to the evolutionary emergence of self-sustained oscillations. Akin to aggregative life cycles, resource exhaustion triggers group formation, whereas conflicts within multicellular groups restrain resource consumption, thus paving the way for the subsequent unicellular phase. The evolutionary transition from equilibrium coexistence to life cycles solves conflicts among heterogenous cell types by integrating them on a timescale longer than cell division, that comes to be associated to multicellular organization.

Suggested Citation

  • Leonardo Miele & Silvia De Monte, 2021. "Aggregative cycles evolve as a solution to conflicts in social investment," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-16, January.
  • Handle: RePEc:plo:pcbi00:1008617
    DOI: 10.1371/journal.pcbi.1008617
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008617
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008617&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.