IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008495.html
   My bibliography  Save this article

Confidence intervals by constrained optimization—An algorithm and software package for practical identifiability analysis in systems biology

Author

Listed:
  • Ivan Borisov
  • Evgeny Metelkin

Abstract

Practical identifiability of Systems Biology models has received a lot of attention in recent scientific research. It addresses the crucial question for models’ predictability: how accurately can the models’ parameters be recovered from available experimental data. The methods based on profile likelihood are among the most reliable methods of practical identification. However, these methods are often computationally demanding or lead to inaccurate estimations of parameters’ confidence intervals. Development of methods, which can accurately produce parameters’ confidence intervals in reasonable computational time, is of utmost importance for Systems Biology and QSP modeling.We propose an algorithm Confidence Intervals by Constraint Optimization (CICO) based on profile likelihood, designed to speed-up confidence intervals estimation and reduce computational cost. The numerical implementation of the algorithm includes settings to control the accuracy of confidence intervals estimates. The algorithm was tested on a number of Systems Biology models, including Taxol treatment model and STAT5 Dimerization model, discussed in the current article.The CICO algorithm is implemented in a software package freely available in Julia (https://github.com/insysbio/LikelihoodProfiler.jl) and Python (https://github.com/insysbio/LikelihoodProfiler.py).Author summary: Differential equations-based models are widely used in Systems Biology and Quantitative Systems Pharmacology and play a significant role in the discovery of new disease-directed drugs. Complexity of models is a trade off from their employment to crucial fields of biology and medicine. These areas of application require large non-linear models with many unknown parameters. How accurately can the parameters of a model be recovered from experimental data? What is the identifiable subset of parameters? Can the model be reduced or reparameterized to become identifiable? All those questions of identifiability analysis are essential for model’s predictability and reliability. That explains why the topic of identifiability of Systems Biology models has received a lot of attention in recent scientific research. However, existing numerical methods of identifiability analysis are computationally demanding or often lead to inaccurate estimations. Development of methods, which can accurately produce parameters’ confidence intervals in reasonable computational time, is of utmost importance for Systems Biology and QSP modeling. We propose an algorithm and a software package to test identifiability of Systems Biology models, designed to speed-up confidence intervals estimation and reduce computational cost. The software package was tested on a number of Systems Biology models, including Taxol treatment model and STAT5 Dimerization model, discussed in the current article.

Suggested Citation

  • Ivan Borisov & Evgeny Metelkin, 2020. "Confidence intervals by constrained optimization—An algorithm and software package for practical identifiability analysis in systems biology," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-13, December.
  • Handle: RePEc:plo:pcbi00:1008495
    DOI: 10.1371/journal.pcbi.1008495
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008495
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008495&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.