IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007585.html
   My bibliography  Save this article

Increasing growth rate slows adaptation when genotypes compete for diffusing resources

Author

Listed:
  • Jeremy M Chacón
  • Allison K Shaw
  • William R Harcombe

Abstract

The rate at which a species responds to natural selection is a central predictor of the species’ ability to adapt to environmental change. It is well-known that spatially-structured environments slow the rate of adaptation due to increased intra-genotype competition. Here, we show that this effect magnifies over time as a species becomes better adapted and grows faster. Using a reaction-diffusion model, we demonstrate that growth rates are inextricably coupled with effective spatial scales, such that higher growth rates cause more localized competition. This has two effects: selection requires more generations for beneficial mutations to fix, and spatially-caused genetic drift increases. Together, these effects diminish the value of additional growth rate mutations in structured environments.Author summary: What determines how quickly a beneficial mutation will spread through a population? The intuitive answer is that mutations that confer faster growth rates will spread at a rate that is relative to the size of the growth-rate benefit. Indeed, this is true in a well-mixed environment where all genotypes compete globally. But most organisms don’t live in a simple well-mixed environment. Many organisms, like bacteria, live in a structured environment, such as on the surface of a solid substrate. Does life on a surface change the expectation about the spread of faster-growing mutants? We developed a mathematical model to answer this question, and found that on a surface, the actual growth rates—not just the relative growth rates—were critical to determining how fast a faster-growing mutant spread through a population. When the simulated organisms grew slowly, competition was basically global and a faster-growing mutant could pre-empt resources from far-away competitors. In contrast, when organisms grew more quickly, competition became much more localized, and the faster-growing mutant could only steal resources from neighboring competitors. This result means that there are diminishing returns to series of mutations which confer growth-rate benefits. This idea will help us predict and understand future and past evolutionary trajectories.

Suggested Citation

  • Jeremy M Chacón & Allison K Shaw & William R Harcombe, 2020. "Increasing growth rate slows adaptation when genotypes compete for diffusing resources," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-14, January.
  • Handle: RePEc:plo:pcbi00:1007585
    DOI: 10.1371/journal.pcbi.1007585
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007585
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007585&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.