IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007563.html
   My bibliography  Save this article

Neuronal population model of globular bushy cells covering unit-to-unit variability

Author

Listed:
  • Go Ashida
  • Helen T Heinermann
  • Jutta Kretzberg

Abstract

Computations of acoustic information along the central auditory pathways start in the cochlear nucleus. Bushy cells in the anteroventral cochlear nucleus, which innervate monaural and binaural stations in the superior olivary complex, process and transfer temporal cues relevant for sound localization. These cells are categorized into two groups: spherical and globular bushy cells (SBCs/GBCs). Spontaneous rates of GBCs innervated by multiple auditory nerve (AN) fibers are generally lower than those of SBCs that receive a small number of large AN synapses. In response to low-frequency tonal stimulation, both types of bushy cells show improved phase-locking and entrainment compared to AN fibers. When driven by high-frequency tones, GBCs show primary-like-with-notch or onset-L peristimulus time histograms and relatively irregular spiking. However, previous in vivo physiological studies of bushy cells also found considerable unit-to-unit variability in these response patterns. Here we present a population of models that can simulate the observed variation in GBCs. We used a simple coincidence detection model with an adaptive threshold and systematically varied its six parameters. Out of 567000 parameter combinations tested, 7520 primary-like-with-notch models and 4094 onset-L models were selected that satisfied a set of physiological criteria for a GBC unit. Analyses of the model parameters and output measures revealed that the parameters of the accepted model population are weakly correlated with each other to retain major GBC properties, and that the output spiking patterns of the model are affected by a combination of multiple parameters. Simulations of frequency-dependent temporal properties of the model GBCs showed a reasonable fit to empirical data, supporting the validity of our population modeling. The computational simplicity and efficiency of the model structure makes our approach suitable for future large-scale simulations of binaural information processing that may involve thousands of GBC units.Author summary: In the auditory system, specialized neuronal circuits process various types of acoustic information. A group of neurons, called globular bushy cells (GBCs), faithfully transfer timing information of acoustic signals to their downstream neurons responsible for the perception of sound location. Previous physiological studies found representative activity patterns of GBCs, but with substantial individual variations among them. In this study, we present a population of models, instead of creating one best model, to account for the observed variations of GBCs. We varied all six parameters of a simple auditory neuron model and selected the combinations of parameters that led to acceptable activity patterns of GBCs. In total, we tested more than half a million combinations and accepted ~11600 GBC models. Temporal spiking patterns of real GBCs depend on the sound frequency, and our model population was able to replicate this trend. The model used here is computationally efficient and can thus serve as a building block for future large-scale simulations of auditory information processing.

Suggested Citation

  • Go Ashida & Helen T Heinermann & Jutta Kretzberg, 2019. "Neuronal population model of globular bushy cells covering unit-to-unit variability," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-38, December.
  • Handle: RePEc:plo:pcbi00:1007563
    DOI: 10.1371/journal.pcbi.1007563
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007563
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007563&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.