IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007548.html
   My bibliography  Save this article

Chemotaxis in external fields: Simulations for active magnetic biological matter

Author

Listed:
  • Agnese Codutti
  • Klaas Bente
  • Damien Faivre
  • Stefan Klumpp

Abstract

The movement of microswimmers is often described by active Brownian particle models. Here we introduce a variant of these models with several internal states of the swimmer to describe stochastic strategies for directional swimming such as run and tumble or run and reverse that are used by microorganisms for chemotaxis. The model includes a mechanism to generate a directional bias for chemotaxis and interactions with external fields (e.g., gravity, magnetic field, fluid flow) that impose forces or torques on the swimmer. We show how this modified model can be applied to various scenarios: First, the run and tumble motion of E. coli is used to establish a paradigm for chemotaxis and investigate how it is affected by external forces. Then, we study magneto-aerotaxis in magnetotactic bacteria, which is biased not only by an oxygen gradient towards a preferred concentration, but also by magnetic fields, which exert a torque on an intracellular chain of magnets. We study the competition of magnetic alignment with active reorientation and show that the magnetic orientation can improve chemotaxis and thereby provide an advantage to the bacteria, even at rather large inclination angles of the magnetic field relative to the oxygen gradient, a case reminiscent of what is expected for the bacteria at or close to the equator. The highest gain in chemotactic velocity is obtained for run and tumble with a magnetic field parallel to the gradient, but in general a mechanism for reverse motion is necessary to swim against the magnetic field and a run and reverse strategy is more advantageous in the presence of a magnetic torque. This finding is consistent with observations that the dominant mode of directional changes in magnetotactic bacteria is reversal rather than tumbles. Moreover, it provides guidance for the design of future magnetic biohybrid swimmers.Author summary: In this paper, we propose a modified Active Brownian particle model to describe bacterial swimming behavior under the influence of external forces and torques, in particular of a magnetic torque. This type of interaction is particularly important for magnetic biohybrids (i.e. motile bacteria coupled to a synthetic magnetic component) and for magnetotactic bacteria (i.e. bacteria with a natural intracellular magnetic chain), which perform chemotaxis to swim along chemical gradients, but are also directed by an external magnetic field. The model allows us to investigate the benefits and disadvantages of such coupling between two different directionality mechanisms. In particular we show that the magnetic torque can speed chemotaxis up in some conditions, while it can hinder it in other cases. In addition to an understanding of the swimming strategies of naturally magnetotactic organisms, the results may guide the design of future biomedical devices.

Suggested Citation

  • Agnese Codutti & Klaas Bente & Damien Faivre & Stefan Klumpp, 2019. "Chemotaxis in external fields: Simulations for active magnetic biological matter," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-26, December.
  • Handle: RePEc:plo:pcbi00:1007548
    DOI: 10.1371/journal.pcbi.1007548
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007548
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007548&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.