IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007397.html
   My bibliography  Save this article

A model of how depth facilitates scene-relative object motion perception

Author

Listed:
  • Oliver W Layton
  • D C Niehorster

Abstract

Many everyday interactions with moving objects benefit from an accurate perception of their movement. Self-motion, however, complicates object motion perception because it generates a global pattern of motion on the observer’s retina and radically influences an object’s retinal motion. There is strong evidence that the brain compensates by suppressing the retinal motion due to self-motion, however, this requires estimates of depth relative to the object—otherwise the appropriate self-motion component to remove cannot be determined. The underlying neural mechanisms are unknown, but neurons in brain areas MT and MST may contribute given their sensitivity to motion parallax and depth through joint direction, speed, and disparity tuning. We developed a neural model to investigate whether cells in areas MT and MST with well-established neurophysiological properties can account for human object motion judgments during self-motion. We tested the model by comparing simulated object motion signals to human object motion judgments in environments with monocular, binocular, and ambiguous depth. Our simulations show how precise depth information, such as that from binocular disparity, may improve estimates of the retinal motion pattern due the self-motion through increased selectivity among units that respond to the global self-motion pattern. The enhanced self-motion estimates emerged from recurrent feedback connections in MST and allowed the model to better suppress the appropriate direction, speed, and disparity signals from the object’s retinal motion, improving the accuracy of the object’s movement direction represented by motion signals.Author summary: Research has shown that the accuracy with which humans perceive object motion during self-motion improves in the presence of stereo cues. Using a neural modelling approach, we explore whether this finding can be explained through improved estimation of the retinal motion induced by self-motion. Our results show that depth cues that provide information about scene structure may have a large effect on the specificity with which the neural mechanisms for motion perception represent the visual self-motion signal. This in turn enables effective removal of the retinal motion due to self-motion when the goal is to perceive object motion relative to the stationary world. These results reveal a hitherto unknown critical function of stereo tuning in the MT-MST complex, and shed important light on how the brain may recruit signals from upstream and downstream brain areas to simultaneously perceive self-motion and object motion.

Suggested Citation

  • Oliver W Layton & D C Niehorster, 2019. "A model of how depth facilitates scene-relative object motion perception," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-29, November.
  • Handle: RePEc:plo:pcbi00:1007397
    DOI: 10.1371/journal.pcbi.1007397
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007397
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007397&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.