IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007194.html
   My bibliography  Save this article

Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish

Author

Listed:
  • Liu Lei
  • Ramón Escobedo
  • Clément Sire
  • Guy Theraulaz

Abstract

Coordinated motion and collective decision-making in fish schools result from complex interactions by which individuals integrate information about the behavior of their neighbors. However, little is known about how individuals integrate this information to take decisions and control their motion. Here, we combine experiments with computational and robotic approaches to investigate the impact of different strategies for a fish to interact with its neighbors on collective swimming in groups of rummy-nose tetra (Hemigrammus rhodostomus). By means of a data-based agent model describing the interactions between pairs of H. rhodostomus (Calovi et al., 2018), we show that the simple addition of the pairwise interactions with two neighbors quantitatively reproduces the collective behavior observed in groups of five fish. Increasing the number of interacting neighbors does not significantly improve the simulation results. Remarkably, and even without confinement, we find that groups remain cohesive and polarized when each agent interacts with only one of its neighbors: the one that has the strongest contribution to the heading variation of the focal agent, dubbed as the “most influential neighbor”. However, group cohesion is lost when each agent only interacts with its nearest neighbor. We then investigate by means of a robotic platform the collective motion in groups of five robots. Our platform combines the implementation of the fish behavioral model and a control system to deal with real-world physical constraints. A better agreement with experimental results for fish is obtained for groups of robots only interacting with their most influential neighbor, than for robots interacting with one or even two nearest neighbors. Finally, we discuss the biological and cognitive relevance of the notion of “most influential neighbors”. Overall, our results suggest that fish have to acquire only a minimal amount of information about their environment to coordinate their movements when swimming in groups.Author summary: How do fish integrate and combine information from multiple neighbors when swimming in a school? What is the minimum amount of information about their environment needed to coordinate their motion? To answer these questions, we combine experiments with computational and robotic modeling to test several hypotheses about how individual fish could integrate and combine the information on the behavior of their neighbors when swimming in groups. Our research shows that, for both simulated agents and robots, using the information of two neighbors is sufficient to qualitatively reproduce the collective motion patterns observed in groups of fish. Remarkably, our results also show that it is possible to obtain group cohesion and coherent collective motion over long periods of time even when individuals only interact with their most influential neighbor, that is, the one that exerts the most important effect on their heading variation.

Suggested Citation

  • Liu Lei & Ramón Escobedo & Clément Sire & Guy Theraulaz, 2020. "Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-45, March.
  • Handle: RePEc:plo:pcbi00:1007194
    DOI: 10.1371/journal.pcbi.1007194
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007194
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007194&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.