IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006604.html
   My bibliography  Save this article

Learning to synchronize: How biological agents can couple neural task modules for dealing with the stability-plasticity dilemma

Author

Listed:
  • Pieter Verbeke
  • Tom Verguts

Abstract

We provide a novel computational framework on how biological and artificial agents can learn to flexibly couple and decouple neural task modules for cognitive processing. In this way, they can address the stability-plasticity dilemma. For this purpose, we combine two prominent computational neuroscience principles, namely Binding by Synchrony and Reinforcement Learning. The model learns to synchronize task-relevant modules, while also learning to desynchronize currently task-irrelevant modules. As a result, old (but currently task-irrelevant) information is protected from overwriting (stability) while new information can be learned quickly in currently task-relevant modules (plasticity). We combine learning to synchronize with task modules that learn via one of several classical learning algorithms (Rescorla-Wagner, backpropagation, Boltzmann machines). The resulting combined model is tested on a reversal learning paradigm where it must learn to switch between three different task rules. We demonstrate that our combined model has significant computational advantages over the original network without synchrony, in terms of both stability and plasticity. Importantly, the resulting models’ processing dynamics are also consistent with empirical data and provide empirically testable hypotheses for future MEG/EEG studies.Author summary: Artificial and biological agents alike face a critical trade-off between being sufficiently adaptive to acquiring novel information (plasticity) and retaining older information (stability); this is known as the stability-plasticity dilemma. Previous work on this dilemma has focused either on computationally efficient solutions for artificial agents or on biologically plausible frameworks for biological agents. What is lacking is a solution that is both computationally efficient and empirically testable on biological agents. Therefore, the current work proposes a computational framework on the stability-plasticity dilemma that provides empirically testable hypotheses on both neural and behavioral levels. In this framework, neural task modules can be flexibly coupled and decoupled depending on the task at hand. Testing this framework will allow us to gain more insight in how biological agents deal with the stability-plasticity dilemma.

Suggested Citation

  • Pieter Verbeke & Tom Verguts, 2019. "Learning to synchronize: How biological agents can couple neural task modules for dealing with the stability-plasticity dilemma," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-25, August.
  • Handle: RePEc:plo:pcbi00:1006604
    DOI: 10.1371/journal.pcbi.1006604
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006604
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006604&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.