IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003909.html
   My bibliography  Save this article

Deducing the Kinetics of Protein Synthesis In Vivo from the Transition Rates Measured In Vitro

Author

Listed:
  • Sophia Rudorf
  • Michael Thommen
  • Marina V Rodnina
  • Reinhard Lipowsky

Abstract

The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have detailed information about the in-vitro kinetics.Author Summary: The proverb ‘life is motion’ also applies to the molecular scale. Indeed, if we looked into any living cell with molecular resolution, we would observe a large variety of highly dynamic processes. One particularly striking aspect of these dynamics is that all macromolecules within the cell are continuously synthesized, modified, and degraded by complex biomolecular machines. These ‘nanorobots’ follow intricate reaction pathways that form networks of molecular transitions or transformation steps. Each of these steps is stochastic and takes, on average, a certain amount of time. A fundamentally important question is how these individual step times or the corresponding transition rates determine the overall speed of the process in the cell. This question is difficult to answer, however, because the step times can only be measured in vitro but not in vivo. Here, we develop a general computational method by which one can deduce the individual step times in vivo from their in-vitro values. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression, and validate the deduced step times by three independent sets of in-vivo data.

Suggested Citation

  • Sophia Rudorf & Michael Thommen & Marina V Rodnina & Reinhard Lipowsky, 2014. "Deducing the Kinetics of Protein Synthesis In Vivo from the Transition Rates Measured In Vitro," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-17, October.
  • Handle: RePEc:plo:pcbi00:1003909
    DOI: 10.1371/journal.pcbi.1003909
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003909
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003909&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephan Kuhlenkoetter & Wolfgang Wintermeyer & Marina V. Rodnina, 2011. "Different substrate-dependent transition states in the active site of the ribosome," Nature, Nature, vol. 476(7360), pages 351-354, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Berger & A J Hudspeth, 2017. "Chemomechanical regulation of myosin Ic cross-bridges: Deducing the elastic properties of an ensemble from single-molecule mechanisms," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003909. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.