IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003669.html
   My bibliography  Save this article

A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks

Author

Listed:
  • Ankit Gupta
  • Corentin Briat
  • Mustafa Khammash

Abstract

Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed.Author Summary: In many biological disciplines, computational modeling of interaction networks is the key for understanding biological phenomena. Such networks are traditionally studied using deterministic models. However, it has been recently recognized that when the populations are small in size, the inherent random effects become significant and to incorporate them, a stochastic modeling paradigm is necessary. Hence, stochastic models of reaction networks have been broadly adopted and extensively used. Such models, for instance, form a cornerstone for studying heterogeneity in clonal cell populations. In biological applications, one is often interested in knowing the long-term behavior and stability properties of reaction networks even with incomplete knowledge of the model parameters. However for stochastic models, no analytical tools are known for this purpose, forcing many researchers to use a simulation-based approach, which is highly unsatisfactory. To address this issue, we develop a theoretical and computational framework for determining the long-term behavior and stability properties for stochastic reaction networks. Our approach is based on a mixture of ideas from probability theory, linear algebra and optimization theory. We illustrate the broad applicability of our results by considering examples from various biological areas. The biological implications of our results are discussed as well.

Suggested Citation

  • Ankit Gupta & Corentin Briat & Mustafa Khammash, 2014. "A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-16, June.
  • Handle: RePEc:plo:pcbi00:1003669
    DOI: 10.1371/journal.pcbi.1003669
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003669
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003669&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Kazeev & Mustafa Khammash & Michael Nip & Christoph Schwab, 2014. "Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-19, March.
    2. Garrett Jenkinson & John Goutsias, 2012. "Numerical Integration of the Master Equation in Some Models of Stochastic Epidemiology," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    3. Lemarchand, H., 1980. "Asymptotic solution of the master equation near a nonequilibrium transition: The stationary solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 101(2), pages 518-534.
    4. Christopher V. Rao & Denise M. Wolf & Adam P. Arkin, 2002. "Control, exploitation and tolerance of intracellular noise," Nature, Nature, vol. 420(6912), pages 231-237, November.
    5. Pemantle, Robin & Rosenthal, Jeffrey S., 1999. "Moment conditions for a sequence with negative drift to be uniformly bounded in Lr," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 143-155, July.
    6. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    7. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cappelletti, Daniele & Pal Majumder, Abhishek & Wiuf, Carsten, 2021. "The dynamics of stochastic mono-molecular reaction systems in stochastic environments," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 106-148.
    2. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Abolfazl Ramezanpour & Alireza Mashaghi, 2020. "Disease evolution in reaction networks: Implications for a diagnostic problem," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    2. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    3. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    5. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    6. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    7. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    8. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    9. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Global synchronization for a class of dynamical complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 543-556.
    10. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    11. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    12. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    13. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    14. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Stabilization of a class of dynamical complex networks based on decentralized control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 733-744.
    15. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    16. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    17. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    18. Mark Hallen & Bochong Li & Yu Tanouchi & Cheemeng Tan & Mike West & Lingchong You, 2011. "Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    19. Nasimul Noman & Taku Monjo & Pablo Moscato & Hitoshi Iba, 2015. "Evolving Robust Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-21, January.
    20. Duncan Ingram & Guy-Bart Stan, 2023. "Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.