IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003473.html
   My bibliography  Save this article

Behavioral Lateralization and Optimal Route Choice in Flying Budgerigars

Author

Listed:
  • Partha S Bhagavatula
  • Charles Claudianos
  • Michael R Ibbotson
  • Mandyam V Srinivasan

Abstract

Birds flying through a cluttered environment require the ability to choose routes that will take them through the environment safely and quickly. We have investigated some of the strategies by which they achieve this. We trained budgerigars to fly through a tunnel in which they encountered a barrier that offered two passages, positioned side by side, at the halfway point. When one of the passages was substantially wider than the other, the birds tended to fly through the wider passage to continue their transit to the end of the tunnel, regardless of whether this passage was on the right or the left. Evidently, the birds were selecting the safest and quickest route. However, when the two passages were of equal or nearly equal width, some individuals consistently preferred the left-hand passage, while others consistently preferred the passage on the right. Thus, the birds displayed idiosyncratic biases when choosing between alternative routes. Surprisingly - and unlike most of the instances in which behavioral lateralization has previously been discovered - the bias was found to vary from individual to individual, in its direction as well as its magnitude. This is very different from handedness in humans, where the majority of humans are right-handed, giving rise to a so-called ‘population’ bias. Our experimental results and mathematical model of this behavior suggest that individually varying lateralization, working in concert with a tendency to choose the wider aperture, can expedite the passage of a flock of birds through a cluttered environment.Author Summary: Birds display a clear mastery of the skill of flying rapidly and safely through complex and cluttered environments. An example of this can be viewed at http://www.youtube.com/watch?v=p-_RHRAzUHM, which shows a bird flying at high speed through a dense forest. Such mastery requires the ability to determine, from moment to moment, which of several possible routes would provide the safest and quickest passage. Our study is one of the first to investigate how birds achieve this. Our experiments reveal that, when flying budgerigars are required to choose between two passages, they tend to favor the wider passage. However, this tendency is superimposed upon a bias that, surprisingly, varies from bird to bird: some individuals show an intrinsic preference for the left-hand passage, and others for the passage on the right. This is very different from handedness in humans, where the majority of humans are right-handed. We develop a mathematical model of the interaction between the birds' individual biases with their tendency to prefer the wider passage. The model reveals that this interplay is actually beneficial – it can expedite the passage of a flock of birds through a complex environment.

Suggested Citation

  • Partha S Bhagavatula & Charles Claudianos & Michael R Ibbotson & Mandyam V Srinivasan, 2014. "Behavioral Lateralization and Optimal Route Choice in Flying Budgerigars," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1003473
    DOI: 10.1371/journal.pcbi.1003473
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003473
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003473&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    2. Culum Brown & Maria Magat, 2011. "The evolution of lateralized foot use in parrots: a phylogenetic approach," Behavioral Ecology, International Society for Behavioral Ecology, vol. 22(6), pages 1201-1208.
    3. Gavin R. Hunt & Michael C. Corballis & Russell D. Gray, 2001. "Laterality in tool manufacture by crows," Nature, Nature, vol. 414(6865), pages 707-707, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    2. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Carlo Bianca & Marco Menale, 2019. "A Convergence Theorem for the Nonequilibrium States in the Discrete Thermostatted Kinetic Theory," Mathematics, MDPI, vol. 7(8), pages 1-13, July.
    4. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    5. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    6. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    9. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    10. Néstor Sepúlveda & Laurence Petitjean & Olivier Cochet & Erwan Grasland-Mongrain & Pascal Silberzan & Vincent Hakim, 2013. "Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    11. Guang-Hui Xu & Meng Xu & Ming-Feng Ge & Teng-Fei Ding & Feng Qi & Meng Li, 2020. "Distributed Event-Based Control of Hierarchical Leader-Follower Networks with Time-Varying Layer-To-Layer Delays," Energies, MDPI, vol. 13(7), pages 1-14, April.
    12. Yilun Shang & Yamei Ye, 2017. "Leader-Follower Fixed-Time Group Consensus Control of Multiagent Systems under Directed Topology," Complexity, Hindawi, vol. 2017, pages 1-9, March.
    13. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    14. Zafeiris, Anna & Koman, Zsombor & Mones, Enys & Vicsek, Tamás, 2017. "Phenomenological theory of collective decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 287-298.
    15. Li, Wang & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Sun, Yongzheng, 2023. "Noise-induced consensus of leader-following multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 1-11.
    16. James Graham, 2014. "'N Sync: how do countries' economies move together?," Reserve Bank of New Zealand Analytical Notes series AN2014/04, Reserve Bank of New Zealand.
    17. Tanizawa, Toshihiro & Nakamura, Tomomichi & Taya, Fumihiko & Small, Michael, 2018. "Constructing directed networks from multivariate time series using linear modelling technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 437-455.
    18. Katalin Ozogány & Viola Kerekes & Attila Fülöp & Zoltán Barta & Máté Nagy, 2023. "Fine-scale collective movements reveal present, past and future dynamics of a multilevel society in Przewalski’s horses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Yandong Xiao & Chuliang Song & Liang Tian & Yang-Yu Liu, 2019. "Accelerating The Emergence Of Order In Swarming Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-12, December.
    20. Chen, Yu-Rong & Zhang, Xian-Xia & Yu, Yin-Sheng & Ma, Shi-Wei & Yang, Banghua, 2022. "Enhancing convergence efficiency of self-propelled agents using direction preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.