IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003002.html
   My bibliography  Save this article

Folding Pathways of a Knotted Protein with a Realistic Atomistic Force Field

Author

Listed:
  • Silvio a Beccara
  • Tatjana Škrbić
  • Roberto Covino
  • Cristian Micheletti
  • Pietro Faccioli

Abstract

We report on atomistic simulation of the folding of a natively-knotted protein, MJ0366, based on a realistic force field. To the best of our knowledge this is the first reported effort where a realistic force field is used to investigate the folding pathways of a protein with complex native topology. By using the dominant-reaction pathway scheme we collected about 30 successful folding trajectories for the 82-amino acid long trefoil-knotted protein. Despite the dissimilarity of their initial unfolded configuration, these trajectories reach the natively-knotted state through a remarkably similar succession of steps. In particular it is found that knotting occurs essentially through a threading mechanism, involving the passage of the C-terminal through an open region created by the formation of the native -sheet at an earlier stage. The dominance of the knotting by threading mechanism is not observed in MJ0366 folding simulations using simplified, native-centric models. This points to a previously underappreciated role of concerted amino acid interactions, including non-native ones, in aiding the appropriate order of contact formation to achieve knotting. Author Summary: It has been recently observed that the native structure of proteins can contain knots. These are formed during the folding process and are tightened in a specific (i.e. native) location, along the poly-peptide chain. The existence of knots hence implies a high degree coordination of local and global conformational changes, during the folding reaction. In this work we investigate how the knot is formed and what are the dynamical mechanisms which drive the self-entanglement process. To this end, we report on the first atomistically detailed numerical simulation of the folding of a knotted protein, based on a realistic description of the inter-atomic forces. These simulations show that the knot is formed by following a specific sequence of contacts. The comparison of the findings with those based on simplified folding models suggest that the productive succession of contacts is aided by a concerted interplay of amino acid interactions, arguably including non-native ones.

Suggested Citation

  • Silvio a Beccara & Tatjana Škrbić & Roberto Covino & Cristian Micheletti & Pietro Faccioli, 2013. "Folding Pathways of a Knotted Protein with a Realistic Atomistic Force Field," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1003002
    DOI: 10.1371/journal.pcbi.1003002
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003002
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003002&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rhonald C Lua & Alexander Y Grosberg, 2006. "Statistics of Knots, Geometry of Conformations, and Evolution of Proteins," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-8, May.
    2. Tatjana Škrbić & Cristian Micheletti & Pietro Faccioli, 2012. "The Role of Non-Native Interactions in the Folding of Knotted Proteins," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatjana Škrbić & Cristian Micheletti & Pietro Faccioli, 2012. "The Role of Non-Native Interactions in the Folding of Knotted Proteins," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    2. Miguel A Soler & Patrícia F N Faísca, 2013. "Effects of Knots on Protein Folding Properties," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    3. Miguel A Soler & Patrícia F N Faísca, 2012. "How Difficult Is It to Fold a Knotted Protein? In Silico Insights from Surface-Tethered Folding Experiments," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    4. Michael C Prentiss & David J Wales & Peter G Wolynes, 2010. "The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.