IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002882.html
   My bibliography  Save this article

Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective

Author

Listed:
  • Graham Rockwell
  • Nicholas J Guido
  • George M Church

Abstract

Advances in computational metabolic optimization are required to realize the full potential of new in vivo metabolic engineering technologies by bridging the gap between computational design and strain development. We present Redirector, a new Flux Balance Analysis-based framework for identifying engineering targets to optimize metabolite production in complex pathways. Previous optimization frameworks have modeled metabolic alterations as directly controlling fluxes by setting particular flux bounds. Redirector develops a more biologically relevant approach, modeling metabolic alterations as changes in the balance of metabolic objectives in the system. This framework iteratively selects enzyme targets, adds the associated reaction fluxes to the metabolic objective, thereby incentivizing flux towards the production of a metabolite of interest. These adjustments to the objective act in competition with cellular growth and represent up-regulation and down-regulation of enzyme mediated reactions. Using the iAF1260 E. coli metabolic network model for optimization of fatty acid production as a test case, Redirector generates designs with as many as 39 simultaneous and 111 unique engineering targets. These designs discover proven in vivo targets, novel supporting pathways and relevant interdependencies, many of which cannot be predicted by other methods. Redirector is available as open and free software, scalable to computational resources, and powerful enough to find all known enzyme targets for fatty acid production. Author Summary: A deeper understanding of biological processes, along with methods in synthetic biology, is driving the frontier of metabolic engineering. In particular, a better representation of cell metabolism will enable the engineering of bacterial strains that can act as factories for valuable biochemical products, from medicines to biofuels. Models which predict the behavior of these complex biological systems enable better engineering design as well as a more comprehensive understanding of fundamental biological principles. Here we develop a new method, called Redirector, for modeling metabolic alterations, and their relationship to cell growth. This method optimizes genetic engineering changes to achieve metabolite production using a new representation of the metabolic impact of genetic manipulation, which is more biologically realistic than existing models. We discover proven and novel engineering targets to improve fatty acid production, correctly predicting how different combinations of genes build upon one another. This work demonstrates that Redirector is a powerful method for designing cell factories and improving our understanding of metabolic systems.

Suggested Citation

  • Graham Rockwell & Nicholas J Guido & George M Church, 2013. "Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
  • Handle: RePEc:plo:pcbi00:1002882
    DOI: 10.1371/journal.pcbi.1002882
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002882
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002882&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric J. Steen & Yisheng Kang & Gregory Bokinsky & Zhihao Hu & Andreas Schirmer & Amy McClure & Stephen B. del Cardayre & Jay D. Keasling, 2010. "Microbial production of fatty-acid-derived fuels and chemicals from plant biomass," Nature, Nature, vol. 463(7280), pages 559-562, January.
    2. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    3. Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
    4. Pamela P. Peralta-Yahya & Mario Ouellet & Rossana Chan & Aindrila Mukhopadhyay & Jay D. Keasling & Taek Soon Lee, 2011. "Identification and microbial production of a terpene-based advanced biofuel," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    5. Nicholas J. Guido & Xiao Wang & David Adalsteinsson & David McMillen & Jeff Hasty & Charles R. Cantor & Timothy C. Elston & J. J. Collins, 2006. "A bottom-up approach to gene regulation," Nature, Nature, vol. 439(7078), pages 856-860, February.
    6. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    2. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
    3. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    4. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    5. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Nagarajan, Radhakrishnan, 2007. "Delay estimation in a two-node acyclic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 725-737.
    7. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    8. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    9. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    10. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    11. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    12. Ioannis G Aviziotis & Michail E Kavousanakis & Andreas G Boudouvis, 2015. "Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    13. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    14. Xu, Yong & Zhu, Ya-nan & Shen, Jianwei & Su, Jianbin, 2014. "Switch dynamics for stochastic model of genetic toggle switch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 461-466.
    15. Sara Hooshangi & William E Bentley, 2011. "LsrR Quorum Sensing “Switch” Is Revealed by a Bottom-Up Approach," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-11, September.
    16. Jiegen Wu & Baoqiang Chen & Yadi Liu & Liang Ma & Wen Huang & Yihan Lin, 2022. "Modulating gene regulation function by chemically controlled transcription factor clustering," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Wu, Juan & Xu, Yong & Ma, Shaojuan, 2019. "Realizing the transformation of logic gates in a genetic toggle system under Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 171-179.
    18. Cencetti, Giulia & Battiston, Federico & Carletti, Timoteo & Fanelli, Duccio, 2020. "Generalized patterns from local and non local reactions," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    19. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    20. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.