IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002864.html
   My bibliography  Save this article

Effects of Ligand Binding on the Mechanical Properties of Ankyrin Repeat Protein Gankyrin

Author

Listed:
  • Giovanni Settanni
  • David Serquera
  • Piotr E Marszalek
  • Emanuele Paci
  • Laura S Itzhaki

Abstract

Ankyrin repeat proteins are elastic materials that unfold and refold sequentially, repeat by repeat, under force. Herein we use atomistic molecular dynamics to compare the mechanical properties of the 7-ankyrin-repeat oncoprotein Gankyrin in isolation and in complex with its binding partner S6-C. We show that the bound S6-C greatly increases the resistance of Gankyrin to mechanical stress. The effect is specific to those repeats of Gankyrin directly in contact with S6-C, and the mechanical ‘hot spots’ of the interaction map to the same repeats as the thermodynamic hot spots. A consequence of stepwise nature of unfolding and the localized nature of ligand binding is that it impacts on all aspects of the protein's mechanical behavior, including the order of repeat unfolding, the diversity of unfolding pathways accessed, the nature of partially unfolded intermediates, the forces required and the work transferred to the system to unfold the whole protein and its parts. Stepwise unfolding thus provides the means to buffer repeat proteins and their binding partners from mechanical stress in the cell. Our results illustrate how ligand binding can control the mechanical response of proteins. The data also point to a cellular mechano-switching mechanism whereby binding between two partner macromolecules is regulated by mechanical stress. Author Summary: Here we use molecular dynamics simulation to compare the mechanical properties of the 7-ankyrin-repeat oncoprotein Gankyrin in isolation and in complex with binding partner S6-C. Tandem repeat proteins like Gankyrin comprise tandem arrays of small structural motifs that pack linearly to produce elongated architectures. They are elastic, mechanically weak molecules and they unfold and refold repeat by repeat under force. We show that S6-C binding greatly increases the resistance of Gankyrin to mechanical stress. The enhanced mechanical stability is specific to those ankyrin repeats in contact with S6-C, and the localized nature of the effect results in fundamental changes in the way the protein responds to force. Thus, the forced unfolding of isolated Gankryin involves a diverse set of pathways with a preference for a C- to N-terminus unfolding mechanism whereas this diversity is reduced upon complex formation with the central repeats, which are those most tightly bound to the ligand, tending to unfold last. Our study shows how stepwise unfolding can buffer repeat proteins and their binding partners from mechanical stress in the cell. It also points to a mechano-switching mechanism whereby binding between two partner macromolecules is regulated by mechanical stress.

Suggested Citation

  • Giovanni Settanni & David Serquera & Piotr E Marszalek & Emanuele Paci & Laura S Itzhaki, 2013. "Effects of Ligand Binding on the Mechanical Properties of Ankyrin Repeat Protein Gankyrin," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
  • Handle: RePEc:plo:pcbi00:1002864
    DOI: 10.1371/journal.pcbi.1002864
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002864
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002864&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.