IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002800.html
   My bibliography  Save this article

Molecular Evolution of Peptide Ligands with Custom-Tailored Characteristics for Targeting of Glycostructures

Author

Listed:
  • Niels Röckendorf
  • Markus Borschbach
  • Andreas Frey

Abstract

As an advanced approach to identify suitable targeting molecules required for various diagnostic and therapeutic interventions, we developed a procedure to devise peptides with customizable features by an iterative computer-assisted optimization strategy. An evolutionary algorithm was utilized to breed peptides in silico and the “fitness” of peptides was determined in an appropriate laboratory in vitro assay. The influence of different evolutional parameters and mechanisms such as mutation rate, crossover probability, gaussian variation and fitness value scaling on the course of this artificial evolutional process was investigated. As a proof of concept peptidic ligands for a model target molecule, the cell surface glycolipid ganglioside GM1, were identified. Consensus sequences describing local fitness optima were reached from diverse sets of L- and proteolytically stable D lead peptides. Ten rounds of evolutional optimization encompassing a total of just 4400 peptides lead to an increase in affinity of the peptides towards fluorescently labeled ganglioside GM1 by a factor of 100 for L- and 400 for D-peptides. Author Summary: A clever identification procedure is crucial when peptidic ligands for diagnostic and therapeutic techniques such as in vivo imaging or drug targeting are to be developed. Here, we present a propitious and versatile approach for the discovery of peptide sequences with custom features that is based on an iterative computer-assisted optimization process. The methodology smartly combines in silico evolution with in vitro testing to quickly obtain promising peptide ligand candidates with desired properties. To validate our method in a proof of concept we tried to identify peptide sequences that can bind to a glycosidic cell membrane component. We applied the evolution process by starting out with a small population of peptide lead sequences and achieved a constant increase in affinity between the peptide candidates and their target molecule with each generation. After 10 rounds and a total number of only 4400 peptides synthesized and tested, a more than 100fold improvement in target recognition could be achieved. Since all kinds of building blocks useable in chemical solid phase peptide synthesis can in principle be employed in this evolutionary optimization process, our method should prove a most versatile approach for the optimization of peptides, peptoids and peptomers towards a preset functionality.

Suggested Citation

  • Niels Röckendorf & Markus Borschbach & Andreas Frey, 2012. "Molecular Evolution of Peptide Ligands with Custom-Tailored Characteristics for Targeting of Glycostructures," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-10, December.
  • Handle: RePEc:plo:pcbi00:1002800
    DOI: 10.1371/journal.pcbi.1002800
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002800
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002800&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.